×

Integral polynomials on Banach spaces not containing \(\ell _1\). (English) Zbl 1224.46088

Summary: We give new characterizations of Banach spaces not containing \(\ell _1\) in terms of integral and \(p\)-dominated polynomials, extending to the polynomial setting a result of Cardassi and more recent results of Rosenthal.

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46B25 Classical Banach spaces in the general theory
47H60 Multilinear and polynomial operators

References:

[1] R. Alencar: On reflexivity and basis for P(m E). Proc. Roy. Irish Acad. Sect. A 85 (1985), 131–138. · Zbl 0594.46043
[2] J.M. Ansemil and K. Floret: The symmetric tensor product of a direct sum of locally convex spaces. Studia Math. 129 (1998), 285–295. · Zbl 0931.46005
[3] R.M. Aron and P.D. Berner: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France 106 (1978), 3–24. · Zbl 0378.46043
[4] R.M. Aron, C. Hervés and M. Valdivia: Weakly continuous mappings on Banach spaces. J. Funct. Anal. 52 (1983), 189–204. · Zbl 0517.46019 · doi:10.1016/0022-1236(83)90081-2
[5] R.M. Aron and J.B. Prolla: Polynomial approximation of differentiable functions on Banach spaces. J. Reine Angew. Math. 313 (1980), 195–216. · Zbl 0413.41022 · doi:10.1515/crll.1980.313.195
[6] F. Blasco: Complementation in spaces of symmetric tensor products and polynomials. Studia Math. 123 (1997), 165–173. · Zbl 0870.46028
[7] D. Carando and S. Lassalle: Extension of vector-valued integral polynomials. J. Math. Anal. Appl. 307 (2005), 77–85. · Zbl 1082.46034 · doi:10.1016/j.jmaa.2004.10.020
[8] C. S. Cardassi: Strictly p-integral and p-nuclear operators, in: Analyse harmonique: Groupe de travail sur les espaces de Banach invariants par translation, Exp. II. Publ. Math. Orsay (1989).
[9] R. Cilia, M. D’Anna and J.M. Gutiérrez: Polynomial characterization of spaces. J. Math. Anal. Appl. 275 (2002), 900–912. · Zbl 1031.46051 · doi:10.1016/S0022-247X(02)00461-4
[10] R. Cilia and J.M. Gutiérrez: Polynomial characterization of Asplund spaces. Bull. Belgian Math. Soc. Simon Stevin 12 (2005), 393–400. · Zbl 1114.46034
[11] R. Cilia and J.M. Gutiérrez: Integral and S-factorizable multilinear mappings. Proc. Roy. Soc. Edinburgh 136A (2006), 115–137. · Zbl 1134.47042 · doi:10.1017/S0308210500004467
[12] R. Cilia and J.M. Gutiérrez: Ideals of integral and r-factorable polynomials. Bol. Soc. Mat. Mexicana 14, 3a Serie (2008). · Zbl 1208.46047
[13] A. Defant and K. Floret: Tensor Norms and Operator Ideals. Math. Studies, vol. 176, North-Holland, Amsterdam, 1993. · Zbl 0774.46018
[14] J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43; Cambridge University Press, Cambridge, 1995. · Zbl 0855.47016
[15] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977.
[16] S. Dineen: Complex Analysis on Infinite Dimensional Spaces. Springer Monogr. Math., Springer, Berlin, 1999. · Zbl 1034.46504
[17] G. Emmanuele: Dominated operators on C[0, 1] and the (CRP). Collect. Math. 41 (1990), 21–25. · Zbl 0752.47006
[18] G. Emmanuele: Banach spaces with the (CRP) and dominated operators on C(K). Ann. Acad. Sci. Fenn. Math. 16 (1991), 243–248. · Zbl 0707.47021
[19] K. Floret: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 (1997), 153–188. · Zbl 0961.46013
[20] K. Floret: On ideals of n-homogeneous polynomials on Banach spaces. Topological algebras with applications to differential geometry and mathematical physics (Athens, 1999), 19–38, Univ. Athens, Athens, 2002.
[21] K. Floret and S. Hunfeld: Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces. Proc. Amer. Math. Soc. 130 (2002), 1425–1435. · Zbl 1027.46054 · doi:10.1090/S0002-9939-01-06228-1
[22] J.M. Gutiérrez: Weakly continuous functions on Banach spaces not containing 1. Proc. Amer. Math. Soc. 119 (1993), 147–152.
[23] J.M. Gutiérrez and I. Villanueva: Extensions of multilinear operators and Banach space properties. Proc. Roy. Soc. Edinburgh 133A (2003), 549–566. · Zbl 1064.46029 · doi:10.1017/S0308210500002535
[24] M.C. Matos: Absolutely summing holomorphic mappings. An. Acad. Bras. Ci. 68 (1996), 1–13. · Zbl 0854.46042
[25] Y. Meléndez and A. Tonge: Polynomials and the Pietsch domination theorem. Proc. Roy. Irish Acad. Sect. A 99 (1999), 195–212. · Zbl 0973.46037
[26] J. Mujica: Complex Analysis in Banach Spaces. Math. Studies, vol. 120, North-Holland, Amsterdam, 1986. · Zbl 0586.46040
[27] K. Musial: Martingales of Pettis integrable functions (D. Kölzow, ed.). Measure Theory. Oberwolfach 1979, Lecture Notes in Math. 794, Springer, Berlin, 1980, pp. 324–339.
[28] G. Pisier: Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Reg. Conf. Ser. Math. 60, American Mathematical Society, Providence RI, 1987. · Zbl 0588.46010
[29] H.P. Rosenthal: Some new characterizations of Banach spaces containing 1, preprint.
[30] R.A. Ryan: Applications of topological tensor products to infinite dimensional holomorphy. Ph. D. Thesis, Trinity College, Dublin (1980).
[31] M. Talagrand: Pettis Integral and Measure Theory. Mem. Amer. Math. Soc. 307, American Mathematical Society, Providence RI, 1984. · Zbl 0582.46049
[32] I. Villanueva: Integral mappings between Banach spaces. J. Math. Anal. Appl. 279 (2003), 56–70. · Zbl 1030.47503 · doi:10.1016/S0022-247X(02)00362-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.