×

On pseudo quasi-Einstein manifolds. (English) Zbl 1224.53029

A type of non-flat semi-Riemannian manifolds, called pseudo quasi-Einstein manifold, is introduced and studied in detail. The quasi-Einstein manifolds are well-known, and are relevant in general relativity: Robertson-Walker spacetimes belong to this class. Presenting a number of non-trivial examples, the author demonstrates that the more general new class does exist and noteworthy.

MSC:

53B05 Linear and affine connections
53B15 Other connections
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Marcel Dekker Inc., New York, 1981. · Zbl 0462.53001
[2] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189–214. · Zbl 0837.53038 · doi:10.1007/BF02761646
[3] F. Brickell and R. S. Clark, Differentiable manifolds, Van Nostrand Reinhold Comp., London, 1970. · Zbl 0199.56303
[4] M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. · Zbl 0968.53030
[5] B. Y. Chen and K. Yano, Hypersurfaces of conformally flat spaces, Tensor (N. S.), 26 (1972), 318–322. · Zbl 0257.53027
[6] U. C. De and G. C. Ghosh, On quasi-Einstein manifolds, Period. Math. Hungar., 48(1–2) (2004), 223–231. · Zbl 1059.53030 · doi:10.1023/B:MAHU.0000038977.94711.ab
[7] R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor, Prace Nauk. Pol. Szczec., 11 (1989), 23–34.
[8] R. Deszcz, F. Dillen, L. Verstraelen and L. Vrancken, Quasi-Einstein totally real submanifolds of S 6(1), Tohoku Math. J., 51 (1999), 461–478. · Zbl 0990.53014 · doi:10.2748/tmj/1178224715
[9] R. Deszcz, M. Glogowska, M. Hotloś and Z. Sentürk, On certain quasi-Einstein semi-symmetric hypersurfaces, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 41 (1998), 153–166.
[10] R. Deszcz, M. Hotloś and Z. Sentürk, Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. Math., 81 (2001), 81–97. · Zbl 0991.53009 · doi:10.4064/cm89-1-6
[11] R. Deszcz, M. Hotloś and Z. Sentürk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math., 27(4) (2001), 375–389.
[12] R. Deszcz, P. Verheyen and L. Verstraelen, On some generalized Einstein metric conditions, Publ. Inst. Math. (Beograd) (N.S.), 60:74 (1996), 108–120.
[13] D. Ferus, A remark on Codazzi tensors on constant curvature space, Global Differential Geometry and Global Analysis, Lecture Notes in Math. 838, Springer-Verlag, New York, 1981. · Zbl 0437.53013
[14] N. J. Hicks, Notes on Differential Geometry, Affiliated East West Press Pvt. Ltd., 1969. · Zbl 0191.53001
[15] Koufogiorgos, T. and Tsichlias, C., Generalized (k, {\(\mu\)})-contact metric manifolds with rad k= constant, J. Geom., 78 (2003), 83–91. · Zbl 1058.53039 · doi:10.1007/s00022-003-1678-y
[16] A. L. Mocanu, Les variétés a courbure quasi-constant de type Vrănceanu, Lucr. Conf. Nat. de Geom. Si Top., Tirgoviste, 1987.
[17] B. O’ Neill, Semi-Riemannian Geometry, Academic Press, Inc., 1983.
[18] M. Novello and M. J. Reboucas, The stability of a rotating universe, The Astrophysics Journal, 225 (1978), 719–724. · doi:10.1086/156533
[19] J. A. Schouten, Ricci-calculus (2nd edn.), Springer-Verlag, Berlin, 1954.
[20] A. A. Shaikh and K. K. Baishya, On -symmetric LP-Sasakian manifolds, Yokohama Math. J., 52 (2006), 97–112. · Zbl 1101.53025
[21] A. A. Shaikh and K. K. Baishya, On (k, {\(\mu\)})-contact metric manifolds, Diff. Geom. Dyn. Syst., 8 (2006), 253–261. · Zbl 1160.53349
[22] B. Spain, Tensor Calculus (3rd edn.), Radha Publishing House, Kolkata, 1995. · Zbl 0052.16904
[23] Gh. Vrănceanu, Lecons des Geometrie Differential, Vol. 4, Ed. de l’Academie, Bucharest, 1968.
[24] Y. Watanabe, Integral inequalities in compact orientable manifolds, Riemannian or Kahlerian, Kodai Math. Sem. Rep., 20 (1968), 264–271. · Zbl 0172.23302 · doi:10.2996/kmj/1138845694
[25] K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970. · Zbl 0213.23801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.