Welch, P. D. Weak systems of determinacy and arithmetical quasi-inductive definitions. (English) Zbl 1225.03082 J. Symb. Log. 76, No. 2, 418-436 (2011). Summary: We locate winning strategies for various \(\Sigma^0_3\)-games in the \(L\)-hierarchy in order to prove the following:Theorem 1. \(\text{KP} + \Sigma_2\)-Comprehension \(\vdash \exists \alpha L_\alpha\vDash\text{``}\Sigma_2\text{-KP}+\pmb{\Sigma}^0_3\)-Determinacy”. Alternatively: \(\Pi^1_3\)-CA\(_0\vdash\) “there is a \(\beta\)-model of \(\Delta^1 _3\)-CA\(_0+\pmb{\Sigma}^0_3\)-Determinacy”. The implication is not reversible. (The antecedent here may be replaced with \(\Pi^1 _3 (\Pi^1 _3)\text{-CA}_0\): \(\Pi^1_3\) instances of Comprehension with only \(\Pi^1 _3\)-lightface definable parameters – or even weaker theories.) Theorem 2. \(\text{KP}+\Delta_2\)-Comprehension \(+\Sigma_2\)-Replacement \(+\text{AQI}\nvdash\Sigma^0_3\)-Determinacy.(Here AQI is the assertion that every arithmetical quasi-inductive definition converges.) Alternatively: \(\Delta^1_3\text{-CA}_0+\text{AQI}\nvdash\Sigma^0_3\)-Determinacy. Hence the theories \(\Pi^1_3\text{-CA}_{0}\), \(\Delta^1_3\text{-CA}_{0}+\Sigma^0_3\)-Det, \(\Delta^1_3\text{-CA}_0\)+AQI, and \(\Delta^1_3\text{-CA}_{0}\) are in strictly descending order of strength. Cited in 2 ReviewsCited in 18 Documents MSC: 03F35 Second- and higher-order arithmetic and fragments 91A80 Applications of game theory Keywords:subsystems of second-order arithmetic; \(\Sigma^0_3\)-games; determinacy; comprehension; arithmetical quasi-inductive definition PDF BibTeX XML Cite \textit{P. D. Welch}, J. Symb. Log. 76, No. 2, 418--436 (2011; Zbl 1225.03082) Full Text: DOI arXiv References: [1] Ways of proof theory: Festschrift for W. Pohlers (2010) [2] Recursion in Kolmogoroff’s R operator and the ordinal {\(\sigma\)}3 51 pp 1– (1986) [3] Eventually Infinite Time Turing degrees: infinite time decidable reals 65 pp 1193– (2000) · Zbl 0959.03025 [4] DOI: 10.1007/BF00302339 · Zbl 0513.03003 [5] Foundations of the Formal Sciences V pp 143– (2007) [6] Infinite time Turing machines 65 pp 567– (2000) [7] DOI: 10.1090/S0002-9939-08-09275-7 · Zbl 1145.03030 [8] DOI: 10.1023/A:1023027808400 · Zbl 1026.03009 [9] Constructibility (1984) · Zbl 0542.03029 [10] Annals of Mathematical Studies 52 pp 85– (1964) [11] The truth is never simple 51 pp 663– (1986) [12] Admissible sets and structures (1975) [13] DOI: 10.1016/0168-0072(91)90045-N · Zbl 0729.03033 [14] Subsystems of second order arithmetic (1999) · Zbl 0909.03048 [15] Higher recursion theory (1990) · Zbl 0716.03043 [16] DOI: 10.1007/s00153-004-0226-2 · Zbl 1068.03046 [17] DOI: 10.1007/s00153-004-0232-4 · Zbl 1068.03047 [18] Annual conference of the European Association for Computer Science Logic (CLS) 2471 (2002) [19] DOI: 10.1007/BFb0069303 [20] DOI: 10.1112/S0024609399006657 · Zbl 1016.03040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.