×

On the existence of Stone-Čech compactification. (English) Zbl 1225.03089

From the introduction: In [Ann. Pure Appl. Logic 146, No. 2–3, 103–123 (2007; Zbl 1139.03044)], I characterized the locales of which the Stone-Čech compactification can be defined in constructive type theory CTT, and in the formal system CZF+uREA+DC, a natural extension of Aczel’s system for constructive set theory CZF by a strengthening of the Regular Extension Axiom REA and the principle of Dependent Choice.
In this paper I show that this characterization continues to hold over the standard system CZF\(^+\), i.e., CZF plus REA, thus removing in particular any dependency from a choice principle. This will follow by a result of independent interest, namely the proof that the class of continuous mappings from a compact regular locale \(X\) to a regular and set-presented locale \(Y\) is a set in CZF (even without REA).
By exploiting the consistency of CZF+REA with a general form of Troelstra’s principle of uniformity [A. S. Troelstra and D. van Dalen, Constructivism in mathematics. An introduction. Volume I. Studies in Logic and the Foundations of Mathematics, 121. Amsterdam etc.: North-Holland (1988; Zbl 0653.03040)], I then prove that the existence of Stone-Čech compactification of a non-degenerate Boolean locale is independent of the axioms of CZF (+REA), so that the aforementioned characterization characterizes a proper subcollection of the collection of all locales. The same also holds for several, even impredicative, extensions of CZF+REA, as well as for CTT. This is in strong contrast with what happens in the context of higher-order Heyting arithmetic HHA – and thus in any topos-theoretic universe: within HHA the constructions by Banaschewski and Mulvey and by Johnstone of Stone-Čech compactification can be carried out for every locale.

MSC:

03F60 Constructive and recursive analysis
03F65 Other constructive mathematics
06D22 Frames, locales
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)

References:

[1] Logic Colloquium 2003 24 pp 282– (2006)
[2] DOI: 10.1090/S0002-9947-1937-1501905-7 · JFM 63.1173.01 · doi:10.1090/S0002-9947-1937-1501905-7
[3] DOI: 10.1007/BF01278464 · Zbl 0819.03047 · doi:10.1007/BF01278464
[4] DOI: 10.1016/S0168-0072(03)00052-6 · Zbl 1070.03041 · doi:10.1016/S0168-0072(03)00052-6
[5] DOI: 10.2307/1968839 · Zbl 0017.42803 · doi:10.2307/1968839
[6] Theoretical Computer Science · Zbl 0867.68002
[7] DOI: 10.1016/S0022-4049(03)00119-1 · Zbl 1036.54006 · doi:10.1016/S0022-4049(03)00119-1
[8] DOI: 10.1016/0022-4049(84)90001-X · Zbl 0549.54017 · doi:10.1016/0022-4049(84)90001-X
[9] Houston Journal of Mathematics 6 pp 301– (1980)
[10] Notes on constructive set theory (2000)
[11] DOI: 10.1016/j.apal.2009.03.005 · Zbl 1223.03050 · doi:10.1016/j.apal.2009.03.005
[12] DOI: 10.1016/j.apal.2005.05.016 · Zbl 1077.03035 · doi:10.1016/j.apal.2005.05.016
[13] Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, held in Helsinki, Finland, August 14–20, 2003 24 pp 221– (2006)
[14] Intuitionistic type theory (1984)
[15] DOI: 10.1007/s11813-007-0005-6 · Zbl 1162.03034 · doi:10.1007/s11813-007-0005-6
[16] DOI: 10.1016/j.apal.2005.07.002 · Zbl 1094.03038 · doi:10.1016/j.apal.2005.07.002
[17] Sketches of an elephant: a topos theory compendium. II 44 (2002) · Zbl 1071.18001
[18] Stone spaces (1982) · Zbl 0499.54001
[19] DOI: 10.1007/BFb0061824 · doi:10.1007/BFb0061824
[20] Mathematical Logic Quarterly
[21] DOI: 10.1016/j.jpaa.2007.07.023 · Zbl 1141.06003 · doi:10.1016/j.jpaa.2007.07.023
[22] DOI: 10.1016/j.apal.2006.12.004 · Zbl 1139.03044 · doi:10.1016/j.apal.2006.12.004
[23] Constructivism in mathematics, an introduction 121 (1988)
[24] Logic Colloquium 2002 27 pp 299– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.