zbMATH — the first resource for mathematics

Quasimodular forms and vector bundles. (English) Zbl 1225.11051
Summary: Modular forms for a discrete subgroup \(\Gamma\) of \(\text{SL}(2,\mathbb R)\) can be identified with holomorphic sections of line bundles over the modular curve \(U\) corresponding to \(\Gamma\), and quasimodular forms generalize modular forms. We construct vector bundles over \(U\) whose sections can be identified with quasimodular forms for \(\Gamma\).

11F11 Holomorphic modular forms of integral weight
11F23 Relations with algebraic geometry and topology
Full Text: DOI
[1] Kaneko, A Generalized Jacobi Theta Function and Quasimodular Forms pp 165– (1995) · Zbl 0892.11015
[2] DOI: 10.4007/annals.2006.163.517 · Zbl 1105.14076
[3] DOI: 10.1142/S1793042107000924 · Zbl 1142.11027
[4] DOI: 10.1007/s002220100142 · Zbl 1019.32014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.