Bernstein, Joseph; Reznikov, Andre Subconvexity bounds for triple \(L\)-functions and representation theory. (English) Zbl 1225.11068 Ann. Math. (2) 172, No. 3, 1679-1718 (2010). The subconvexity problem is in the core of modern analytic number theory [H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of \(L\)-functions. GAFA 2000. Visions in mathematics – Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25-September 3, 1999. Part II. Basel: Birkhäuser, 705–741 (2000; Zbl 0996.11036)]. In the paper under review the authors study the subconvexity problems for triple \(L\)–functions for \(\text{PGL}_2(\mathbb R)\) using their new method of estimating the trilinear period of automorphic representations of \(\text{PGL}_2(\mathbb R)\). Their method is based on the study of analytic structure of the corresponding unique trilinear functional on unitary representations of \(\text{PGL}_2(\mathbb R)\). Their work is based on earlier works of A. Ichino [“Trilinear forms and the central values of triple product \(L\)-functions.” Duke Math. J. 145, No. 2, 281–307 (2008; Zbl 1222.11065)], M. Harris and S. S. Kudla, [“The central critical value of a triple product \(L\)-function,” Ann. Math. (2) 133, No. 3, 605–672 (1991; Zbl 0731.11031)], and Watson [“Rankin triple products and quantum chaos,” Ann. Math. (2) (to appear)]. Reviewer: Goran Muic (Zagreb) Cited in 1 ReviewCited in 24 Documents MSC: 11F70 Representation-theoretic methods; automorphic representations over local and global fields 11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods Keywords:subconvexity bounds; triple \(L\)–functions; representation theory Citations:Zbl 0996.11036; Zbl 0731.11031; Zbl 1222.11065 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] V. I. Arnol\('\)d, S. M. Gusevin-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Boston: Birkhauser, 1985, vol. 82. · Zbl 0554.58001 [2] J. Bernstein and A. Reznikov, ”Analytic continuation of representations and estimates of automorphic forms,” Ann. of Math., vol. 150, iss. 1, pp. 329-352, 1999. · Zbl 0934.11023 · doi:10.2307/121105 [3] J. Bernstein and A. Reznikov, ”Estimates of automorphic functions,” Mosc. Math. J., vol. 4, iss. 1, pp. 19-37, 310, 2004. · Zbl 1081.11037 [4] W. Casselman, ”Canonical extensions of Harish-Chandra modules to representations of \(G\),” Canad. J. Math., vol. 41, iss. 3, pp. 385-438, 1989. · Zbl 0702.22016 · doi:10.4153/CJM-1989-019-5 [5] I. M. Gel\('\)fand and G. E. Shilov, Generalized Functions. Vol. I: Properties and Operations, New York: Academic Press, 1964. · Zbl 0115.33101 [6] I. M. Gel\('\)fand, M. I. Graev, and Y. N. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory, New York: Academic Press, 1966. · Zbl 0144.17202 [7] I. M. Gel\('\)fand, M. Graev, and I. Piatetski-Shapiro, Generalized Functions. Vol. 6: Representation Theorem and Automorphic Forms, Phila., PA: W. B. Saunders, 1969. · Zbl 0177.18003 [8] A. Good, ”Cusp forms and eigenfunctions of the Laplacian,” Math. Ann., vol. 255, iss. 4, pp. 523-548, 1981. · Zbl 0439.30031 · doi:10.1007/BF01451932 [9] B. H. Gross, ”Some applications of Gel\('\)fand pairs to number theory,” Bull. Amer. Math. Soc., vol. 24, iss. 2, pp. 277-301, 1991. · Zbl 0733.11018 · doi:10.1090/S0273-0979-1991-16017-9 [10] A. Ichino, ”Trilinear forms and the central values of triple product \(L\)-functions,” Duke Math. J., vol. 145, iss. 2, pp. 281-307, 2008. · Zbl 1222.11065 · doi:10.1215/00127094-2008-052 [11] H. Iwaniec, ”Small eigenvalues of Laplacian for \(\Gamma_0(N)\),” Acta Arith., vol. 56, iss. 1, pp. 65-82, 1990. · Zbl 0702.11034 [12] H. Iwaniec and P. Sarnak, ”Perspectives on the analytic theory of \(L\)-functions,” Geom. Funct. Anal., iss. Special Volume, Part II, pp. 705-741, 2000. · Zbl 0996.11036 [13] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, New York: Springer-Verlag, 2003. · Zbl 1028.35001 [14] M. Harris and S. S. Kudla, ”The central critical value of a triple product \(L\)-function,” Ann. of Math., vol. 133, iss. 3, pp. 605-672, 1991. · Zbl 0731.11031 · doi:10.2307/2944321 [15] B. Krötz and R. J. Stanton, ”Holomorphic extensions of representations. I. Automorphic functions,” Ann. of Math., vol. 159, iss. 2, pp. 641-724, 2004. · Zbl 1053.22009 · doi:10.4007/annals.2004.159.641 [16] H. Y. Loke, ”Trilinear forms of \(\mathfrak{gl}_2\),” Pacific J. Math., vol. 197, iss. 1, pp. 119-144, 2001. · Zbl 1049.22007 · doi:10.2140/pjm.2001.197.119 [17] H. Maass, ”Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,” Math. Ann., vol. 121, pp. 141-183, 1949. · Zbl 0033.11702 · doi:10.1007/BF01329622 [18] W. Magnus, Formulas and Theorems for the Special Functions, New York: Springer-Verlag, 1966. · Zbl 0143.08502 [19] B. Malgrange, Ideals of Differentiable Functions, Bombay: Tata Institute of Fundamental Research, 1967, vol. 3. · Zbl 0177.17902 [20] P. Michel, ”Familles de fonctions \(L\) de formes automorphes et applications,” J. Théor. Nombres Bordeaux, vol. 15, iss. 1, pp. 275-307, 2003. · Zbl 1056.11027 · doi:10.5802/jtnb.403 [21] P. Michel and A. Venkatesh, ”Equidistribution, \(L\)-functions and ergodic theory: on some problems of Yu. Linnik,” in International Congress of Mathematicians, Eur. Math. Soc., Zürich, 2006, vol. II, pp. 421-457. · Zbl 1157.11019 [22] V. F. Molvcanov, ”Tensor products of unitary representations of the three-dimensional Lorentz group,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 43, iss. 4, pp. 860-891, 967, 1979. [23] A. I. Oksak, ”Trilinear Lorentz invariant forms,” Comm. Math. Phys., vol. 29, pp. 189-217, 1973. [24] D. Prasad, ”Trilinear forms for representations of \({ GL}(2)\) and local \(\epsilon\)-factors,” Compositio Math., vol. 75, iss. 1, pp. 1-46, 1990. · Zbl 0731.22013 [25] I. I. Piatetski-Shapiro, ”Euler subgroups,” in Lie Groups and their Representations, New York: Halsted, 1975, pp. 597-620. · Zbl 0329.20028 [26] R. Rankin, ”Contributions to the theory of Ramanujan’s function \(\tau(n)\),” Proc. Cambridge Philos. Soc., vol. 35, pp. 357-372, 1939. · Zbl 0021.39202 [27] A. Reznikov, ”Non-vanishing of periods of automorphic functions,” Forum Math., vol. 13, iss. 4, pp. 485-493, 2001. · Zbl 0970.11019 · doi:10.1515/form.2001.018 [28] A. Reznikov, ”Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms,” J. Amer. Math. Soc., vol. 21, iss. 2, pp. 439-477, 2008. · Zbl 1188.11024 · doi:10.1090/S0894-0347-07-00581-4 [29] P. Sarnak, ”Integrals of products of eigenfunctions,” Internat. Math. Res. Notices, iss. 6, p. 251, 1994. · Zbl 0833.11020 · doi:10.1155/S1073792894000280 [30] A. Selberg, On the Estimation of Fourier Coefficients, New York: Springer-Verlag, 1989. [31] C. D. Sogge, ”Concerning the \(L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds,” J. Funct. Anal., vol. 77, iss. 1, pp. 123-138, 1988. · Zbl 0641.46011 · doi:10.1016/0022-1236(88)90081-X [32] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton, NJ: Princeton Univ. Press, 1993, vol. 43. · Zbl 0821.42001 [33] A. Venkatesh, ”Sparse equidistribution problems, period bounds, and subconvexity,” Ann. of Math., vol. 172, pp. 989-1094, 2010. · Zbl 1214.11051 · doi:10.4007/annals.2010.172.989 [34] N. R. Wallach, Real Reductive Groups. I, Boston, MA: Academic Press, 1988, vol. 132. · Zbl 0666.22002 [35] T. C. Watson, Rankin triple products and quantum chaos. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.