Baier, Stephan; Zhao, Liangyi An improvement for the large sieve for square moduli. (English) Zbl 1225.11121 J. Number Theory 128, No. 1, 154-174 (2008). Summary: We establish a result on the large sieve with square moduli. These bounds improve recent results by S. Baier [J. Ramanujan Math. Soc. 21, No. 3, 279–295 (2006; Zbl 1152.11041)] and L. Zhao [Acta Arith. 112, No. 3, 297–308 (2004; Zbl 1060.11055)]. Cited in 2 ReviewsCited in 23 Documents MSC: 11N35 Sieves 11B57 Farey sequences; the sequences \(1^k, 2^k, \dots\) 11L07 Estimates on exponential sums 11L40 Estimates on character sums 11L15 Weyl sums Keywords:large sieve; Farey fractions in short intervals; estimates on exponential sums and integrals Citations:Zbl 1152.11041; Zbl 1060.11055 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Baier, S.; Zhao, L., Large sieve inequalities for characters to powerful moduli, Int. J. Number Theory, 1, 2, 265-279 (2005) · Zbl 1083.11060 [2] Baier, S.; Zhao, L., Bombieri-Vinogradov theorem for sparse sets of moduli, Acta Arith., 125, 2, 187-201 (2006) · Zbl 1149.11045 [3] Baier, S., On the large sieve with sparse sets of moduli, J. Ramanujan Math. Soc., 21, 279-295 (2006) · Zbl 1152.11041 [4] Bombieri, E.; Davenport, H., Some inequalities involving trigonometrical polynomials, Ann. Sc. Norm. Super. Pisa, 23, 223-241 (1969) · Zbl 0186.08201 [5] Bump, D., Automorphic Forms and Representations, Cambridge Stud. Adv. Math., vol. 55 (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0911.11022 [6] Davenport, H.; Halberstam, H., Corrigendum and Addendum, Mathematika, 14, 232-299 (1967) · Zbl 0171.01001 [7] Davenport, H., Multiplicative Number Theory, Grad. Texts in Math., vol. 74 (2000), Springer-Verlag: Springer-Verlag Barcelona etc. · Zbl 1002.11001 [8] Elliott, P. D.T. A., Primes in short arithmetic progressions with rapidly increasing differences, Trans. Amer. Math. Soc., 353, 7, 2705-2724 (2001) · Zbl 0987.11057 [9] Gallagher, P. X., The large sieve, Mathematika, 14, 14-20 (1967) · Zbl 0163.04401 [10] Graham, S. W.; Kolesnik, G., Van der Corput’s Method of Exponential Sums, London Math. Soc. Lecture Note Ser., vol. 126 (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0713.11001 [11] Ivić, A., The Riemann Zeta-Function, Theory and Applications (2003), Dover Publications, Inc.: Dover Publications, Inc. Mineola, NY · Zbl 1034.11046 [12] Linnik, J. V., The large sieve, Dokl. Akad. Nauk SSSR, 36, 119-120 (1941) [13] Mikawa, H.; Peneva, T. P., Primes in arithmetic progression to spaced moduli, Arch. Math. (Basel), 84, 3, 239-248 (2005) · Zbl 1074.11055 [14] Montgomery, H. L.; Vaughan, R. C., The large sieve, Mathematika (20), 119-134 (1973) · Zbl 0296.10023 [15] Montgomery, H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math., vol. 227 (1971), Spring-Verlag: Spring-Verlag Barcelona, etc. · Zbl 0216.03501 [16] Montgomery, H. L., The analytic principles of large sieve, Bull. Amer. Math. Soc., 84, 4, 547-567 (1978) · Zbl 0408.10033 [17] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function (1986), Clarendon Press: Clarendon Press Oxford · Zbl 0601.10026 [18] Zhao, L., Large sieve inequality for characters to square moduli, Acta Arith., 112, 3, 297-308 (2004) · Zbl 1060.11055 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.