zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration method for solving the multi -- pantograph delay equation. (English) Zbl 1225.34024
Summary: In this Letter, the variational iteration method is applied to solve the multi-pantograph delay equation. Sufficient conditions are given to assure the convergence of the method. Examples show that the method is effective.

34A45Theoretical approximation of solutions of ODE
65K10Optimization techniques (numerical methods)
65L05Initial value problems for ODE (numerical methods)
Full Text: DOI
[1] He, J. H.: Comput. methods appl. Mech. eng.. 167, 57 (1998)
[2] He, J. H.: Int. J. Nonlinear mech.. 34, No. 4, 699 (1999)
[3] He, J. H.: Int. J. Mod. phys. B. 20, No. 10, 1141 (2006)
[4] He, J. H.: J. comput. Appl. math.. 207, No. 1, 3 (2007)
[5] He, J. H.; Wu, X. H.: Comput. math. Appl.. 54, 881 (2007)
[6] He, J. H.: Appl. math. Comput.. 118, No. 2 -- 3, 115 (2000)
[7] He, J. H.; Wu, X. H.: Chaos solitons fractals. 29, 108 (2006)
[8] Wazwaz, A. M.: Chaos solitons fractals. 37, 1136 (2008)
[9] Mokhtari, R.: Int. J. Nonlinear sci. Numer.. 9, 19 (2008)
[10] Ozer, H.: Int. J. Nonlinear sci. Numer.. 9, 25 (2008)
[11] Ozer, H.: Int. J. Nonlinear sci. Numer.. 8, 513 (2007)
[12] Yusufoglu, E.: Int. J. Nonlinear sci. Numer.. 8, 153 (2007)
[13] Odibat, Z. M.; Momani, S.: Int. J. Nonlinear sci. Numer.. 7, No. 1, 27 (2006)
[14] Wang, S. Q.; He, J. H.: Phys. lett. A. 367, 188 (2007)
[15] Sezer, M.; Yalcinbas, S.; Sahin, N.: J. comput. Appl. math.. 214, 406 (2008)
[16] Keskin, Y.: Int. J. Nonlinear sci. Numer.. 8, 159 (2007)
[17] Liu, M. Z.; Li, D. S.: Appl. math. Comput.. 155, 853 (2004)
[18] Liu, M. Z.; Yang, Z. W.; Xu, Y.: Math. comput.. 75, 1201 (2006)
[19] Li, D.; Liu, M. Z.: Appl. math. Comput.. 163, 383 (2005)
[20] Muroya, Y.; Ishiwata, E.; Brunner, H.: J. comput. Appl. math.. 152, 347 (2003)
[21] Evens, D. J.; Raslan, K. R.: Int. J. Comput. math.. 82, No. 1, 49 (2005)