Zhang, Peiguo Iterative solutions of singular boundary value problems of third-order differential equation. (English) Zbl 1225.34031 Bound. Value Probl. 2011, Article ID 483057, 10 p. (2011). Summary: We consider the following third-order boundary value problem\[ \begin{gathered} u'''(t)+f(t,u(t))=0,\quad t\in (0,1),\\ u(0)=u'(0)=0,\qquad u'(1)=\alpha u'(\eta),\end{gathered}\tag{1} \]where \(f\in C((0,1)\times (-\infty,+\infty),(-\infty,+\infty))\), \(0<\eta<1\).We give the unique solution of the boundary value problem (1) under the conditions that \(\alpha\eta\neq 1\) and \(f(t,x)\) is mixed nonmonotone in \(x\) by using the cone theory and the Banach contraction mapping principle. Cited in 6 Documents MSC: 34B16 Singular nonlinear boundary value problems for ordinary differential equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations 34A45 Theoretical approximation of solutions to ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Gregus, M., Third order linear Differential equations (1987), Dordrecht, the Netherlands · Zbl 0602.34005 [2] Guo L-J, Sun J-P, Zhao Y-H: Existence of positive solutions for nonlinear third-order three-point boundary value problems. Nonlinear Analysis. Theory, Methods & Applications 2008, 68(10):3151-3158. 10.1016/j.na.2007.03.008 · Zbl 1141.34310 · doi:10.1016/j.na.2007.03.008 [3] Wang F, Cui Y: On the existence of solutions for singular boundary value problem of third-order differential equations. Mathematica Slovaca 2010, 60(4):485-494. 10.2478/s12175-010-0027-5 · Zbl 1240.34088 · doi:10.2478/s12175-010-0027-5 [4] Sun Y: Positive solutions for third-order three-point nonhomogeneous boundary value problems. Applied Mathematics Letters 2009, 22(1):45-51. 10.1016/j.aml.2008.02.002 · Zbl 1163.34313 · doi:10.1016/j.aml.2008.02.002 [5] Graef JR, Webb JRL: Third order boundary value problems with nonlocal boundary conditions. Nonlinear Analysis. Theory, Methods & Applications 2009, 71(5-6):1542-1551. 10.1016/j.na.2008.12.047 · Zbl 1189.34034 · doi:10.1016/j.na.2008.12.047 [6] Liu Z, Debnath L, Kang SM: Existence of monotone positive solutions to a third order two-point generalized right focal boundary value problem. Computers & Mathematics with Applications 2008, 55(3):356-367. 10.1016/j.camwa.2007.03.021 · Zbl 1155.34312 · doi:10.1016/j.camwa.2007.03.021 [7] Minhós FM: On some third order nonlinear boundary value problems: existence, location and multiplicity results. Journal of Mathematical Analysis and Applications 2008, 339(2):1342-1353. 10.1016/j.jmaa.2007.08.005 · Zbl 1144.34009 · doi:10.1016/j.jmaa.2007.08.005 [8] Hopkins B, Kosmatov N: Third-order boundary value problems with sign-changing solutions. Nonlinear Analysis. Theory, Methods & Applications 2007, 67(1):126-137. 10.1016/j.na.2006.05.003 · Zbl 1130.34010 · doi:10.1016/j.na.2006.05.003 [9] Yao Q: Successive iteration of positive solution for a discontinuous third-order boundary value problem. Computers & Mathematics with Applications 2007, 53(5):741-749. 10.1016/j.camwa.2006.12.007 · Zbl 1149.34316 · doi:10.1016/j.camwa.2006.12.007 [10] Boucherif A, Al-Malki N: Nonlinear three-point third-order boundary value problems. Applied Mathematics and Computation 2007, 190(2):1168-1177. 10.1016/j.amc.2007.02.039 · Zbl 1134.34007 · doi:10.1016/j.amc.2007.02.039 [11] Li S: Positive solutions of nonlinear singular third-order two-point boundary value problem. Journal of Mathematical Analysis and Applications 2006, 323(1):413-425. 10.1016/j.jmaa.2005.10.037 · Zbl 1107.34019 · doi:10.1016/j.jmaa.2005.10.037 [12] Sun Y: Positive solutions of singular third-order three-point boundary value problem. Journal of Mathematical Analysis and Applications 2005, 306(2):589-603. 10.1016/j.jmaa.2004.10.029 · Zbl 1074.34028 · doi:10.1016/j.jmaa.2004.10.029 [13] Du Z, Ge W, Lin X: Existence of solutions for a class of third-order nonlinear boundary value problems. Journal of Mathematical Analysis and Applications 2004, 294(1):104-112. 10.1016/j.jmaa.2004.02.001 · Zbl 1053.34017 · doi:10.1016/j.jmaa.2004.02.001 [14] Guo D: Semi-Ordered Method in Nonlinear Analysis. Shandong Scientific Technical Press, Jinan, China; 2000. [15] Guo DJ, Lakshmikantham V: Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering. Volume 5. Academic Press, Boston, Mass, USA; 1988:viii+275. · Zbl 0661.47045 [16] Guo D, Lakshmikantham V, Liu X: Nonlinear Integral Equations in Abstract Spaces, Mathematics and Its Applications. Volume 373. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1996:viii+341. · Zbl 0866.45004 · doi:10.1007/978-1-4613-1281-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.