zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Three weak solutions for elliptic Dirichlet problems. (English) Zbl 1225.35067
An existence result of three non-zero solutions for non-autonomous elliptic Dirichlet problems, under suitable assumptions on the nonlinear term, is presented. The approach is based on a recent three critical points theorem for differentiable functionals.

35J15Second order elliptic equations, general
35J20Second order elliptic equations, variational methods
35J50Systems of elliptic equations, variational methods
Full Text: DOI
[1] Agmon, S.: The lp approach to the Dirichlet problem, Ann. sc. Norm. super. Pisa 13, 405-448 (1959) · Zbl 0093.10601 · numdam:ASNSP_1959_3_13_4_405_0
[2] Ambrosetti, A.; Rabinowitz, P. H.: Dual variational methods in critical point theory and applications, J. funct. Anal. 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[3] Bonanno, G.; Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. differential equations 244, 3031-3059 (2008) · Zbl 1149.49007 · doi:10.1016/j.jde.2008.02.025
[4] Bonanno, G.; Marano, S. A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. anal. 89, 1-10 (2010) · Zbl 1194.58008 · doi:10.1080/00036810903397438
[5] Castro, A.; Cossio, J.: Multiple solutions for a nonlinear Dirichlet problem, SIAM J. Math. anal. 25, 1554-1561 (1994) · Zbl 0807.35039 · doi:10.1137/S0036141092230106
[6] Cossio, J.; Herrón, S.; Vélez, C.: Existence of solutions for an asymptotically linear Dirichlet problem via lazer-solimini results, Nonlinear anal. 71, 66-71 (2009) · Zbl 1168.35364 · doi:10.1016/j.na.2008.10.031
[7] Gilbarg, D.; Trudinger, N. S.: Elliptic partial differential equations of second order, (1983) · Zbl 0562.35001
[8] Kristály, A.; Rădulescu, V.; Varga, Cs.: Variational principles in mathematical physics, geometry, and economics: qualitative analysis of nonlinear equations and unilateral problems, Encyclopedia math. Appl. 136 (2010)
[9] Landesman, E. M.; Lazer, A. C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. math. Mech. 19, 609-623 (1970) · Zbl 0193.39203
[10] Micheletti, A. M.; Pistoia, A.: A variational viewpoint of the existence of three solutions for some nonlinear elliptic problem, Differential integral equations 9, 1029-1042 (1996) · Zbl 0851.35042
[11] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations, CBMS reg. Conf. ser. Math. 65 (1986) · Zbl 0609.58002
[12] Ricceri, B.: On a three critical points theorem, Arch. math. (Basel) 75, 220-226 (2000) · Zbl 0979.35040 · doi:10.1007/s000130050496
[13] Ricceri, B.: A general variational principle and some of its applications, J. comput. Appl. math. 113, 401-410 (2000) · Zbl 0946.49001 · doi:10.1016/S0377-0427(99)00269-1
[14] Ricceri, B.: Existence of three solutions for a class of elliptic eigenvalue problems, Math. comput. Modelling 32, 1485-1494 (2000) · Zbl 0970.35089 · doi:10.1016/S0895-7177(00)00220-X
[15] Talenti, G.: Best constants in Sobolev inequality, Ann. mat. Pura appl. 110, 353-372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013