×

zbMATH — the first resource for mathematics

Isomorphism of extensions of \(C(\mathbb{T} ^{2})\). (English) Zbl 1225.46051
Summary: We give a certain classification theorem of extensions of the torus algebra up to isomorphism and also show that the \(K_{0}\)-group \(K_{0}(E)\) and the semigroup \(V(E)\) are two complete invariants of such extension algebras.

MSC:
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46L35 Classifications of \(C^*\)-algebras
46L05 General theory of \(C^*\)-algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arveson W. Notes on extensions of C*-algebras. Duke Math J, 1977, 44: 329–355 · Zbl 0368.46052
[2] Blackadar B. K-Theory for Operator Algebras, 2nd ed. Mathematical Sciences Research Institute Publications, 5. Cambridge: Cambridge University Press, 1998 · Zbl 0913.46054
[3] Brown L G, Douglas R G, Fillmore P A. Unitary equivalence modulo the compact operators and extensions of C*-algebras. In: Proceedings of a Conference on Operator Theory (Dalhousie Univ, Halifax, NS, 1973), Lecture Notes in Math, 345. Berlin: Springer, 1973, 58–128 · Zbl 0277.46053
[4] Brown L G, Douglas R G, Fillmore P A. Extensions of C*-algebras and K-homology. Ann of Math, 1977, 105: 265–324 · Zbl 0376.46036
[5] Elliott G A. On the classification of C*-algebras of real rank zero. J Reine Angew Math, 1993, 443: 179–219 · Zbl 0809.46067
[6] Elliott G A. A classification of certain simple C*-algebras. II. J Ramanujan Math Soc, 1997, 12: 97–134 · Zbl 0954.46035
[7] Elliott G A, Gong G. On the classification of C*-algebras of real rank zero. II. Ann of Math, 1996, 144: 497–610 · Zbl 0867.46041
[8] Elliott G A, Gong G. On inductive limits of matrix algebras over the two-torus. Amer J Math, 1996, 118: 263–290 · Zbl 0847.46032
[9] Lin H. On the classification of C*-algebras of real rank zero with zero K 1. J Operator Theory, 1996, 35: 147–178 · Zbl 0849.46043
[10] Lin H. A classification theorem for infinite Toeplitz algebras. In: Operator Algebras and Operator Theory (Shanghai, 1997). Contemp Math, 228. Providence, RI: Amer Math Soc, 1998, 219–275
[11] Lin H. Classification of simple C*-algebras of tracial topological rank zero. Duke Math J, 2004, 125: 91–119 · Zbl 1068.46032
[12] Lin H, Su H. Classification of direct limits of generalized Toeplitz algebras. Pacific J Math, 1997, 181: 89–140 · Zbl 0905.46043
[13] MacLane S. Homology. Berlin: Springer-Verlag, 1963
[14] Phillips N C. A classification theorem for nuclear purely infinite simple C*-algebras. Doc Math, 2000, 5: 49–114 · Zbl 0943.46037
[15] Rordam M. Classification of extensions of certain C*-algebras by their six term exact sequences in K-theory. Math Ann, 1997, 308: 93–117 · Zbl 0874.46039
[16] Wei C, Liu S. Certain invariants of extension algebras of C(T2). Archiv Math, 2008, 90: 520–527 · Zbl 1160.46036
[17] Wei C. Equivalence of extensions of AF-algebras. Proc Indian Acad Sci, 2010, 120: 209–215 · Zbl 1209.46037
[18] Wei C. Universal coefficient theorem for the stable Ext-groups. J Funct Anal, 2010, 258: 650–664 · Zbl 1194.46103
[19] Wei C, Wang L. Hereditary subalgebras and comparisons of positive elements. Sci China Math, 2010, 53: 1565–1570 · Zbl 1200.46050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.