zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Achieving matrix consistency in AHP through linearization. (English) Zbl 1225.90075
Summary: Matrices used in the analytic hierarchy process (AHP) compile expert knowledge as pairwise comparisons among various criteria and alternatives in decision-making problems. Many items are usually considered in the same comparison process and so judgment is not completely consistent-and sometimes the level of consistency may be unacceptable. Different methods have been used in the literature to achieve consistency for an inconsistent matrix. In this paper, we use a linearization technique that provides the closest consistent matrix to a given inconsistent matrix using orthogonal projection in a linear space. As a result, consistency can be achieved in a closed form. This is simpler and cheaper than for methods relying on optimisation, which are iterative by nature. We apply the process to a real-world decision-making problem in an important industrial context, namely, management of water supply systems regarding leakage policies-an aspect of water management to which great sums of money are devoted every year worldwide.

MSC:
90C05Linear programming
91B06Decision theory
WorldCat.org
Full Text: DOI
References:
[1] Saaty, T. L.: Relative measurement and its generalization in decision making. Why pairwise comparisons are central in mathematics for the measurement of intangible factors. The analytic hierarchy/network process, Revista de la real academia de ciencias serie A: matemáticas 102, No. 2, 251-318 (2008) · Zbl 1177.62009 · doi:10.1007/BF03191825
[2] Dong, Y.; Xu, Y.; Li, H.; Dai, M.: A comparative study of the numerical scales and the prioritization methods in AHP, European J. Oper. res. 186, 229-242 (2008) · Zbl 1138.91373 · doi:10.1016/j.ejor.2007.01.044
[3] Saaty, T. L.: A scaling method for priorities in hierarchical structures, J. math. Psychol. 15, 234-281 (1977) · Zbl 0372.62084 · doi:10.1016/0022-2496(77)90033-5
[4] Srdjevic, B.: Linking analytic hierarchy process and social choice methods to support group decision-making in water management, Decision support syst. 42, 2261-2273 (2007)
[5] Ozdemir, M. S.: Validity and inconsistency in the analytic hierarchy process, Appl. math. Comput. 161, 707-720 (2005) · Zbl 1085.62006 · doi:10.1016/j.amc.2003.12.099
[6] Choo, E. U.; Wedley, W. C.: A common framework for deriving preference values from pairwise comparison matrices, Comput. oper. Res. 31, 893-908 (2004) · Zbl 1043.62063 · doi:10.1016/S0305-0548(03)00042-X
[7] Crawford, G.; Williams, C.: A note on the analysis of subjective judgement matrices, J. math. Psychol. 29, 387-405 (1985) · Zbl 0585.62183 · doi:10.1016/0022-2496(85)90002-1
[8] Saaty, T. L.; Hu, G.: Ranking by the eigenvector versus other methods in the analytic hierarchy process, Appl. math. Lett. 11, No. 4, 121-125 (1998) · Zbl 0942.91020 · doi:10.1016/S0893-9659(98)00068-8
[9] J. Aznar, F. Guijarro, Nuevos métodos de valoración, Modelos Multicriterio, Universidad Politécnica de Valencia, Spain, 2008.
[10] Monsuur, H.: An intrinsic consistency threshold for reciprocal matrices, European J. Oper. res. 96, 387-391 (1996) · Zbl 0917.90012 · doi:10.1016/S0377-2217(96)00372-4
[11] Saaty, T. L.: Decision-making with the AHP: why is the principal eigenvector necessary, European J. Oper. res. 145, 85-91 (2003) · Zbl 1012.90015 · doi:10.1016/S0377-2217(02)00227-8
[12] J. Benítez, X. Delgado-Galván, J. Izquierdo, R. Pérez-García, Consistent matrices and consistency improvement in decision-making processes, in: B.H.V. Topping, J.M. Adam, F.J. Pallarés, R. Bru, M.L. Romero, (Eds.), Proceedings of the Seventh International Conference on Engineering Computational Technology, Civil-Comp Press, Stirlingshire, United Kingdom, paper 21, 2010. doi:10.4203/ccp.94.21.
[13] Delgado-Galván, X.; Pérez-García, R.; Izquierdo, J.; Mora-Rodríguez, J.: Analytic hierarchy process for assessing externalities in water leakage management, Math. comput. Model. 52, 1194-1202 (2010)
[14] Crawford, G.; Williams, C.: A note on the analysis of subjective judgement matrices, J. math. Psychol. 29, No. 4, 387-405 (1985) · Zbl 0585.62183 · doi:10.1016/0022-2496(85)90002-1
[15] Mikhailov, L.: A fuzzy programming method for deriving priorities in the analytic hierarchy process, J. oper. Res. soc. 51, No. 3, 341-349 (2000) · Zbl 1055.90560
[16] Lin, C. -C.: An enhanced goal programming method for generating priority vectors, J. oper. Res. soc. 57, No. 12, 1491-1496 (2006) · Zbl 1123.90045 · doi:10.1057/palgrave.jors.2602129
[17] Srdjevic, B.: Combining different prioritization methods in the analytic hierarchy process synthesis, Comput. oper. Res. 32, No. 7, 1897-1919 (2005) · Zbl 1075.90530 · doi:10.1016/j.cor.2003.12.005
[18] Saaty, T. L.; Vargas, L. G.: Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios, Math. model. 5, No. 5, 309-324 (1984) · Zbl 0584.62102 · doi:10.1016/0270-0255(84)90008-3
[19] Barzilai, J.: Deriving weights from pairwise comparison matrices, J. oper. Res. soc. 48, No. 12, 1226-1232 (1997) · Zbl 0895.90004
[20] Bryson, N.: A goal programming method for generating priorities vectors, J. oper. Res. soc. 46, No. 5, 641-648 (1995) · Zbl 0830.90001
[21] Chu, A. T. W.; Kalaba, R. E.; Springarn, K.: A comparison of two methods for determining the weights of belonging to fuzzy sets, J. optim. Theor. appl. 27, No. 4, 531-541 (1979) · Zbl 0377.94002 · doi:10.1007/BF00933438
[22] Meyer, C. D.: Matrix analysis and applied linear algebra, (2000) · Zbl 0962.15001
[23] Farley, M.; Trow, S.: Losses in water distribution networks. A practitioner’s guide to assessment, monitoring and control, (2003)
[24] Finan, J. S.; Hurley, W. J.: The analytic hierarchy process: does adjusting a pairwise comparison matrix to improve the consistency ratio help?, Comput. oper. Res. 24, 749-755 (1997) · Zbl 0894.90001 · doi:10.1016/S0305-0548(96)00090-1
[25] G.W. Stewart, Matrix Algorithms, vol. II, SIAM, 2001. · Zbl 0984.65031 · doi:10.1137/1.9780898718058
[26] Ramanathan, R.; Ramanahan, U.: A qualitative perspective to deriving weights from pairwise comparison matrices, Omega 38, 228-232 (2010)
[27] Aczel, J.; Saaty, T.: Procedures for synthesising ratio judgements, J. math. Psychol. 27, 93-102 (1983) · Zbl 0522.92028 · doi:10.1016/0022-2496(83)90028-7