zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of a vector-bias model on malaria transmission. (English) Zbl 1225.92030
Summary: We incorporate a vector-bias term into a malaria-transmission model to account for the greater attractiveness of infectious humans to mosquitoes in terms of differing probabilities that a mosquito arriving at a human at random picks that human depending on whether he is infectious or susceptible. We prove that transcritical bifurcation occurs at the basic reproductive ratio equalling 1 by projecting the flow onto the extended centre manifold. We next study the dynamics of the system when the incubation time of malaria parasites in mosquitoes is included, and find that the longer incubation time reduces the prevalence of malaria. Also, we incorporate a random movement of mosquitoes as a diffusion term and a chemically directed movement of mosquitoes to humans expressed in terms of sweat and body odour as a chemotaxis term to study the propagation of infected populations to uninfected populations. We find that a travelling wave occurs; its speed is calculated numerically and estimated for the lower bound analytically.

MSC:
92C60Medical epidemiology
34C60Qualitative investigation and simulation of models (ODE)
35Q92PDEs in connection with biology and other natural sciences
37N25Dynamical systems in biology
WorldCat.org
Full Text: DOI
References:
[1] Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans: dynamics and control (1st ed.). Oxford: Oxford University Press.
[2] Aron, J. L. (1988). Mathematical modeling of immunity to malaria. Math. Biosci., 90, 385--396. · Zbl 0651.92018 · doi:10.1016/0025-5564(88)90076-4
[3] Bailey, N. J. T. (1975). The mathematical theory of infectious diseases and its application (1st ed.). London: Griffin. · Zbl 0334.92024
[4] Beier, J. C. (1998). Malaria parasites development in mosquitoes. Ann. Rev. Entomol., 43, 519--543. · doi:10.1146/annurev.ento.43.1.519
[5] Costantini, C., Gibson, G., Sagnon, N., Torre, A. D., Brady, J., & Coluzzi, M. (1996). Mosquito responses to carbon dioxide in a West African Sudan savanna. Med. Vet. Entomol., 10, 220--227. · doi:10.1111/j.1365-2915.1996.tb00734.x
[6] Dietz, K., Molineaux, L., & Thomas, A. (1974). A malaria model tested in the African savannah. Bull. WHO, 50, 347--357.
[7] Doolan, D. L., Dobano, C., & Baird, J. K. (2009). Acquired immunity to malaria. Clin. Microbiol. Rev., 22, 13--36. · doi:10.1128/CMR.00025-08
[8] Drakeley, C., Sutherland, C., Bouserna, J. T., Sauerwein, R. W., & Targett, G. A. T. (2006). The epidemiology of Plasmodium falciparum gametocytes: Weapons of mass dispersion. Trends Parasitol., 22, 424--430. · doi:10.1016/j.pt.2006.07.001
[9] Fenton, A., & Rands, S. A. (2006). The impact of parasite manipulation and predator foraging behavior on predator-prey communities. Ecology, 87, 2832--2841. · doi:10.1890/0012-9658(2006)87[2832:TIOPMA]2.0.CO;2
[10] Fillipe, J. A. N., Riley, E. M., Drakeley, C. J., Sutherland, C. J., & Ghani, A. C. (2007). Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission. PLOS Comput. Biol., 3, e255. · doi:10.1371/journal.pcbi.0030255
[11] Glendinning, P. (1999). Stability, instability and chaos: an introduction to the theory of nonlinear differential equations (1st ed.). Cambridge: Cambridge University Press. · Zbl 0934.37019
[12] Guerra, C. A., Snow, R. W., & Hay, S. I. (2006). Mapping the global extent of malaria in 2005. Trends Parasitol., 22, 353--358. · doi:10.1016/j.pt.2006.06.006
[13] Gupta, S., Swinton, J., & Anderson, R. M. (1994). Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. Lond. B, 256, 231--238. · doi:10.1098/rspb.1994.0075
[14] Hosack, G. R., Rossignol, P. A., & van den Driessche, P. (2008). The control of vector-borne disease epidemics. J. Theor. Biol., 255, 16--25. · doi:10.1016/j.jtbi.2008.07.033
[15] Kingsolver, J. G. (1987). Mosquito host choice and the epidemiology of malaria. Am. Nat., 130, 811--827. · doi:10.1086/284749
[16] Lacroix, R., Mukabana, W. R., Gouagna, L. C., & Koella, J. C. (2005). Malaria infection increases attractiveness of humans to mosquitoes. PLOS Biol., 3, e298. · doi:10.1371/journal.pbio.0030298
[17] Lewis, M., Renclawowicz, J., & van den Driessche, P. (2006). Travelling waves and spread rates for a West Nile virus model. Bull. Math. Biol., 68, 3--23. · doi:10.1007/s11538-005-9018-z
[18] Macdonald, G. (1952). The analysis of equilibrium in malaria. Trop. Dis. Bull, 49, 813--829.
[19] Macdonald, G. (1957). The epidemiology and control of malaria (1st ed.). London: Oxford University Press.
[20] Maidana, N. A., & Yang, H. M. (2008). Describing the geographic spread of dengue disease by travelling waves. Math. Biosci., 215, 64--77. · Zbl 1156.92037 · doi:10.1016/j.mbs.2008.05.008
[21] Mukabana, W. R., Takken, W., Killeen, G. I., & Knols, B. G. J. (2004). Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae. Malar. J., 3, 1--8. · doi:10.1186/1475-2875-3-1
[22] Murray, J. D. (2002). Mathematical biology: I. An introduction (3rd ed.). New York: Springer. · Zbl 1006.92001
[23] Ross, R. (1916). An application of the theory of probabilities to the study of a priori pathometry. Proc. R. Soc. Lond. A, 92, 204--230. · Zbl 46.0789.01 · doi:10.1098/rspa.1916.0007
[24] Ruan, S., Xiao, D., & Beier, J. C. (2008). On the delayed Ross-Macdonald model for malaria transmission. Bull. Math. Biol., 70, 1098--1114. · Zbl 1142.92040 · doi:10.1007/s11538-007-9292-z
[25] Skinner, W., Tong, H., Pearson, T., Strauss, W., & Maibach, H. (1965). Human sweat components attractive to mosquitoes. Nature, 207, 661--662. · doi:10.1038/207661a0
[26] Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434, 214--217. · doi:10.1038/nature03342
[27] Takken, W., & Knols, B. G. J. (1999). Odour-mediated behaviour of Afrotropical malaria mosquitoes. Ann. Rev. Entomol., 44, 131--157. · doi:10.1146/annurev.ento.44.1.131
[28] Wei, H. M., Li, X. Z., & Martcheva, M. (2008). An epidemic model of a vector-borne disease with direct transmission and time delay. J. Math. Anal. Appl., 342, 895--908. · Zbl 1146.34059 · doi:10.1016/j.jmaa.2007.12.058