zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fully fractional anisotropic diffusion for image denoising. (English) Zbl 1225.94003
Summary: This paper introduces a novel Fully Fractional Anisotropic Diffusion Equation for noise removal which contains spatial as well as time fractional derivatives. It is a generalization of a method proposed by Cuesta which interpolates between the heat and the wave equation by the use of time fractional derivatives, and the method proposed by Bai and Feng, which interpolates between the second and the fourth order anisotropic diffusion equation by the use of spatial fractional derivatives. This equation has the benefits of both of these methods. For the construction of a numerical scheme, the proposed partial differential equation (PDE) has been treated as a spatially discretized Fractional Ordinary Differential Equation (FODE) model, and then the Fractional Linear Multistep Method (FLMM) combined with the discrete Fourier transform (DFT) is used. We prove that the analytical solution to the proposed FODE has certain regularity properties which are sufficient to apply a convergent and stable fractional numerical procedure. Experimental results confirm that our model manages to preserve edges, especially highly oscillatory regions, more efficiently than the baseline parabolic diffusion models.

94A08Image processing (compression, reconstruction, etc.)
34A08Fractional differential equations
35R11Fractional partial differential equations
45K05Integro-partial differential equations
65D18Computer graphics, image analysis, and computational geometry
68U10Image processing (computing aspects)
Full Text: DOI
[1] Perona, P.; Malik, J.: Scale-space and edge detection using anisotropic diffusion, IEEE trans. Pattern. anal. Mach intell. 12, 629-639 (1990)
[2] Catte, F.; Lions, P. L.; Morel, J. M.; Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. anal. 29, 182-193 (1992) · Zbl 0746.65091 · doi:10.1137/0729012
[3] Rudin, L. I.; Osher, S.; Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[4] Vogel, C.; Oman, M.: Iterative methods for total variation denoising, SIAM J. Sci. statisc. Comput. 17, 227-238 (1996) · Zbl 0847.65083 · doi:10.1137/0917016
[5] You, Y. L.; Kaveh, M.: Fourth-order partial differential equation for noise removal, IEEE trans. Image process. 9, 1723-1730 (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[6] Lysaker, M.; Lundervold, A.; Tai, X. C.: Noise removal using fourth-order partial differential equation with aplication to medical magnetic resonance images in space and time, IEEE trans. Image process 12, 1579-1590 (2003) · Zbl 1286.94020
[7] Chambole, A.; Lions, P. L.: Image recovery via total variation minimization and related problems, Numer. math. 76, 167-188 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[8] P. Blomgren, P. Mulet, T.F. Chan, C.K. Wong, Total variation image restoration: numerical methods and extensions, in: Proc. Int. Conf. Image Process., vol. 3, 1997, pp. 384--387.
[9] Chan, T. F.; Marquina, A.; Mulet, P.: High order total variation-based image restoration, SIAM J. Sci. comput. 22, 503-516 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[10] Bai, J.; Feng, X. Chu: Fractional order anisotropic difusion for image denoising, IEEE trans. Image process. 16, 2492-2502 (2007)
[11] E. Cuesta, J. Finat, Image Processing by means of linear integro-differential equation, in: Proc. Int. Conf. Vizual. Imaging and Immage Process., 10.10.2003, Benalmadena, Spain.
[12] M. Weilber, Efficient numerical methods for fractional differential equations and their analytical background, Doctorial Dissertation, 09.06.2005. · Zbl 1104.26012
[13] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[14] Aubert, G.; Kornprobst, P.: Mathematical problems in image processing: PDE’s and the calculus of variations, Applied mathematical sciences 147 (2002) · Zbl 1109.35002
[15] Didas, S.; Weickert, J.; Burgeth, B.: Properties of higher order nonlinear diffusion filtering, J. math imaging vis. 35, 208-226 (2009) · Zbl 1171.68788
[16] Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. comp. 45, No. 172, 463-469 (1985) · Zbl 0584.65090 · doi:10.2307/2008136
[17] Henrici, P.: Discrete variable methods in ordinary differential equations, Encyclopedia of mathematics and its applications 34 (1968)
[18] Dieudonné: Foundations of modern analysis, (1960) · Zbl 0100.04201
[19] Diethelm, K.; Ford, J. M.; Ford, N. J.; Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations, J. comput. Appl. math. 186, 482-503 (2006) · Zbl 1078.65550 · doi:10.1016/j.cam.2005.03.023
[20] Mordecai, Avriel: Nonlinear programming: analysis and methods, (2003) · Zbl 1140.90002
[21] Cao, Y.; Yin, J.; Liu, G.; Li, M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear analysis. RWA 11, No. 1, 253-261 (2010) · Zbl 1180.35378 · doi:10.1016/j.nonrwa.2008.11.004
[22] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P.: Image quality assessment: from error to structural similarity, IEEE trans. Image process. 13, No. 4, 600-612 (2004)