×

Weighted semi-trapezoidal approximations of fuzzy numbers. (English) Zbl 1226.03058

The author embeds fuzzy numbers into a Hilbert space \(H\) for computing their weighted semi-trapezoidal approximations via best approximations in a closed convex subset of \(H\). Formulas of matricial type are given, thus improving results of A. I. Ban [Fuzzy Sets Syst. 160, No. 21, 3027–3047 (2009; Zbl 1183.03047); ibid. 160, No. 21, 3048–3058 (2009; Zbl 1183.03048)] and of the author [Fuzzy Sets Syst. 160, No. 21, 3059–3079 (2009; Zbl 1183.03058)].

MSC:

03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abadir, K. M.; Magnus, J. R., Matrix Algebra (2005), Cambridge University Press: Cambridge University Press New York · Zbl 1084.15001
[2] Abbasbandy, S.; Asady, B., The nearest trapezoidal fuzzy number to a fuzzy quantity, Applied Mathematics and Computation, 156, 381-386 (2004) · Zbl 1058.03516
[3] Abbasbandy, S.; Amirfakhrian, M., The nearest trapezoidal form of a generalized left right fuzzy number, International Journal of Approximate Reasoning, 43, 166-178 (2006) · Zbl 1112.03316
[4] Abbasbandy, S.; Amirfakhrian, M., The nearest approximation of a fuzzy quantity in parametric form, Applied Mathematics and Computation, 172, 624-632 (2006) · Zbl 1097.41001
[5] Abbasbandy, S.; Hajjari, T., Weighted trapezoidal approximation preserving cores of a fuzzy numbers, Computers and Mathematics with Applications, 59, 3066-3077 (2010) · Zbl 1193.26026
[6] Allahviranloo, T.; Firozja, M. A., Note on “Trapezoidal approximation of fuzzy numbers”, Fuzzy Sets and Systems, 158, 747-754 (2007) · Zbl 1119.03340
[7] Ban, A. I., Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval, Fuzzy Sets and Systems, 159, 1327-1344 (2008) · Zbl 1176.03024
[8] Ban, A. I., On the nearest parametric approximation of a fuzzy number—revisited, Fuzzy Sets and Systems, 160, 3027-3047 (2009) · Zbl 1183.03047
[9] Ban, A. I., Triangular and parametric approximations of fuzzy numbers—inadvertences and corrections, Fuzzy Sets and Systems, 160, 3048-3058 (2009) · Zbl 1183.03048
[10] Beesack, P. R.; Pecaric, J., Integral inequalities of Chebyshev’s type, Journal of Mathematical Analysis and Applications, 111, 643-659 (1985) · Zbl 0582.26005
[11] Chanas, S., On the interval approximation of a fuzzy number, Fuzzy Sets and Systems, 122, 353-356 (2001) · Zbl 1010.03523
[12] Delgado, M.; Vila, M. A.; Voxman, W., On a canonical representation of fuzzy number, Fuzzy Sets and Systems, 93, 125-135 (1998) · Zbl 0916.04004
[13] Deutsch, F., Best Approximation in Inner Product Space (2001), Springer: Springer New York · Zbl 0980.41025
[14] Grzegorzewski, P., Metrics and orders in space of fuzzy numbers, Fuzzy Sets and Systems, 97, 83-94 (1998) · Zbl 0930.03073
[15] Grzegorzewski, P., Nearest interval approximation of a fuzzy number, Fuzzy Sets and Systems, 130, 321-330 (2002) · Zbl 1011.03504
[16] Grzegorzewski, P.; Mrówka, E., Trapezoidal approximations of fuzzy numbers, Fuzzy Sets and Systems, 153, 115-135 (2005) · Zbl 1067.03508
[17] Grzegorzewski, P.; Mrówka, E., Trapezoidal approximations of fuzzy numbers—revisited, Fuzzy Sets and Systems, 158, 757-768 (2007) · Zbl 1119.03052
[18] Grzegorzewski, P., Trapezoidal approximations of fuzzy numbers preserving the expected interval—algorithms and properties, Fuzzy Sets and Systems, 159, 1354-1364 (2008) · Zbl 1176.03031
[19] P. Grzegorzewski, L. Stefanini, Non-linear shaped approximation of fuzzy numbers, in: Proceedings of IFSA World Congress and Eusflat Conference IFSA/Eusflat 2009, pp. 1535-1540.; P. Grzegorzewski, L. Stefanini, Non-linear shaped approximation of fuzzy numbers, in: Proceedings of IFSA World Congress and Eusflat Conference IFSA/Eusflat 2009, pp. 1535-1540.
[20] Grzegorzewski, P., Algorithms for trapezoidal approximations of fuzzy numbers preserving the expected interval, (Bouchon-Meunier, B.; Magdalena, L.; Ojeda-Aciego, M.; Verdegay, J.-L.; Yager, R. R., Foundations of Reasoning under Uncertainly (2010), Springer), 85-98 · Zbl 1196.03074
[21] Hassine, R.; Karray, F.; Alimi, A. M.; Selmi, M., Approximation properties of piece-wise parabolic functions fuzzy logic systems, Fuzzy Sets and Systems, 157, 501-515 (2006) · Zbl 1083.41013
[22] Ma, M.; Kandel, A.; Friedman, M., A new approach for defuzzification, Fuzzy Sets and Systems, 111, 351-356 (2000) · Zbl 0968.93046
[23] Nasibov, E. N.; Peker, S., On the nearest parametric approximation of a fuzzy number, Fuzzy Sets and Systems, 159, 1365-1375 (2008) · Zbl 1176.03038
[24] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0229.90020
[25] Yeh, C.-T., A note on trapezoidal approximations of fuzzy numbers, Fuzzy Sets and Systems, 158, 747-754 (2007) · Zbl 1119.03057
[26] Yeh, C.-T., On improving trapezoidal and triangular approximations of fuzzy numbers, International Journal of Approximate Reasoning, 48/1, 297-313 (2008) · Zbl 1189.03066
[27] Yeh, C.-T., Trapezoidal and triangular approximations preserving the expected interval, Fuzzy Sets and Systems, 159, 1345-1353 (2008) · Zbl 1176.03041
[28] Yeh, C.-T., Reduction to least-squares estimates in multiple fuzzy regression analysis, IEEE Transactions on Fuzzy Systems, 17/4, 935-948 (2009)
[29] Yeh, C.-T., Weighted trapezoidal and triangular approximations of fuzzy numbers, Fuzzy Sets and Systems, 160, 3059-3079 (2009) · Zbl 1183.03058
[30] Zeng, W.; Li, H., Weighted triangular approximation of fuzzy numbers, International Journal of Approximate Reasoning, 46/1, 137-150 (2007) · Zbl 1136.03332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.