×

On the shape of Bruhat intervals. (English) Zbl 1226.05268

Summary: Let \((W, S)\) be a crystallographic Coxeter group (this includes all finite and affine Weyl groups), and let \(J\subseteq S\). Let \(W^J\) denote the set of minimal coset representatives modulo the parabolic subgroup \(W_J\). For \(w\in W^J\), let \(f^{w,J}_i\) denote the number of elements of length \(i\) below \(w\) in Bruhat order on \(W^J\) (with notation simplified to \(f^w_i\) in the case when \(W^J= W\)). We show that \[ 0\leq i< j\leq\ell(w)- i\quad\text{implies}\quad f^{w,J}_i\leq f^{w,J}_j. \] Also, the case of equalities \(f^w_i= f^w_{\ell(w)-i}\) for \(i= 1,\dots,k\) is characterized in terms of vanishing of coefficients in the Kazhdan-Lusztig polynomial \(P_{e,w}(q)\).
We show that if \(W\) is finite then the number sequence \(f^w_0, f^w_1,\dots, f^w_{\ell(w)}\) cannot grow too rapidly. Further, in the finite case, for any given \(k\geq 1\) and any \(w\in W\) of sufficiently great length (with respect to \(k\)), we show \[ f^w_{\ell(w)-k}\geq f^w_{\ell(w)- k+1}\geq\cdots\geq f^w_{\ell(w)}. \] The proofs rely mostly on properties of the cohomology of Kac-Moody Schubert varieties, such as the following result: if \(\overline X_w\) is a Schubert variety of dimension \(d=\ell(w)\), and \(\lambda= c_1({\mathcal L})\in H^2(\overline X_w)\) is the restriction to \(\overline X_w\) of the Chem class of an ample line bundle, then \[ (\lambda^k)\cdot: H^{d-k}(\overline X_w)\to H^{d+k}(\overline X_w) \] is injective for all \(k\geq 0\).

MSC:

05E99 Algebraic combinatorics
06A11 Algebraic aspects of posets
14F20 Étale and other Grothendieck topologies and (co)homologies
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
14M15 Grassmannians, Schubert varieties, flag manifolds
20F55 Reflection and Coxeter groups (group-theoretic aspects)
05A05 Permutations, words, matrices
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, New York: Springer-Verlag, 2005. · Zbl 1110.05001
[2] A. A. Beuilinson, J. Bernstein, and P. Deligne, ”Faisceaux pervers,” in Analyse et Topologie sur les Espaces Singuliers, I, Paris: Soc. Math. France, 1982, pp. 5-171. · Zbl 0536.14011
[3] J. Bernstein and V. Lunts, Equivariant Sheaves and Functors, New York: Springer-Verlag, 1994. · Zbl 0808.14038
[4] T. Braden and R. MacPherson, ”From moment graphs to intersection cohomology,” Math. Ann., vol. 321, iss. 3, pp. 533-551, 2001. · Zbl 1077.14522
[5] M. Brion, ”Poincaré duality and equivariant (co)homology,” Michigan Math. J., vol. 48, pp. 77-92, 2000. · Zbl 1077.14523
[6] J. B. Carrell, ”The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties,” in Algebraic Groups and their Generalizations: Classical Methods, Haboush, W. J. and Parshall, B. J., Eds., Providence, RI: Amer. Math. Soc., 1994, pp. 53-61. · Zbl 0818.14020
[7] J. B. Carrell, ”On the smooth points of a Schubert variety,” in Representations of Groups, Allison, B. N. and Cliff, G. H., Eds., Providence, RI: Amer. Math. Soc., 1995, pp. 15-33. · Zbl 0854.14022
[8] P. Deligne, ”La conjecture de Weil, II,” Inst. Hautes Études Sci. Publ. Math., vol. 52, pp. 137-252, 1980. · Zbl 0456.14014
[9] M. Dyer, ”On the “Bruhat graph” of a Coxeter system,” Compositio Math., vol. 78, iss. 2, pp. 185-191, 1991. · Zbl 0784.20019
[10] M. Goresky and R. MacPherson, ”Intersection homology, II,” Invent. Math., vol. 72, iss. 1, pp. 77-129, 1983. · Zbl 0529.55007
[11] M. Goresky, ”Kazhdan-Lusztig polynomials for classical groups,” Northeastern University, technical report , 1981.
[12] T. Hausel and B. Sturmfels, ”Toric hyperKähler varieties,” Doc. Math., vol. 7, pp. 495-534, 2002. · Zbl 1029.53054
[13] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge: Cambridge Univ. Press, 1990. · Zbl 0725.20028
[14] A. Hultman, ”Bruhat intervals of length 4 in Weyl groups,” J. Combin. Theory Ser. A, vol. 102, iss. 1, pp. 163-178, 2003. · Zbl 1060.20036
[15] D. Kazhdan and G. Lusztig, ”Representations of Coxeter groups and Hecke algebras,” Invent. Math., vol. 53, iss. 2, pp. 165-184, 1979. · Zbl 0499.20035
[16] V. G. Kac, Infinite-Dimensional Lie Algebras: An Introduction, Boston: Birkhäuser, 1983. · Zbl 0537.17001
[17] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Boston: Birkhäuser, 2002. · Zbl 1026.17030
[18] Théorie des Topos et Cohomologie Étale des Schémas, III, Artin, M., Grothendieck, A., Verdier, J. -L., Deligne, P., and Saint-Donat, B., Eds., New York: Springer-Verlag, 1973. · Zbl 0245.00002
[19] M. Saito, ”Introduction to mixed Hodge modules, Actes du Colloque de Théorie de Hodge, (Luminy, 1987),” Astérisque, pp. 179-180, 1989. · Zbl 0753.32004
[20] P. Slodowy, ”On the geometry of Schubert varieties attached to Kac-Moody Lie algebras,” in Proc. of the 1984 Vancouver Conference in Algebraic Geometry, Carrell, J., Geramita, A. V., and Russell, P., Eds., Providence, RI: Amer. Math. Soc., 1986, pp. 405-442. · Zbl 0591.14038
[21] T. A. Springer, ”A purity result for fixed point varieties in flag manifolds,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 31, iss. 2, pp. 271-282, 1984. · Zbl 0581.20048
[22] R. P. Stanley, ”Hilbert functions of graded algebras,” Advances in Math., vol. 28, iss. 1, pp. 57-83, 1978. · Zbl 0384.13012
[23] R. P. Stanley, ”Weyl groups, the hard Lefschetz theorem, and the Sperner property,” SIAM J. on Algebraic Discrete Methods, vol. 1, iss. 2, pp. 168-184, 1980. · Zbl 0502.05004
[24] D. Stanton, ”Unimodality and Young’s lattice,” J. Combin. Theory Ser. A, vol. 54, iss. 1, pp. 41-53, 1990. · Zbl 0736.05009
[25] E. Swartz, ”\(g\)-elements, finite buildings and higher Cohen-Macaulay connectivity,” J. Combin. Theory Ser. A, vol. 113, iss. 7, pp. 1305-1320, 2006. · Zbl 1102.13025
[26] A. Weber, ”Pure homology of algebraic varieties,” Topology, vol. 43, iss. 3, pp. 635-644, 2004. · Zbl 1072.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.