×

Measure density and extendability of Sobolev functions. (English) Zbl 1226.46029

Summary: We study necessary and sufficient conditions for a domain to be a Sobolev extension domain in the setting of metric measure spaces. In particular, we prove that extension domains must satisfy a measure density condition.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
30L99 Analysis on metric spaces
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Björn, J. and Shanmugalingam, N.: Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. J. Math. Anal. Appl. 332 (2007), no. 1, 190-208. · Zbl 1132.46021
[2] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), 428-517. · Zbl 0942.58018
[3] Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41 (1992), 1027-1076. · Zbl 0767.46025
[4] Chua, S.-K.: Some remarks on extension theorems for weighted Sobolev spaces. Illinois J. Math. 38 (1994), 95-126. · Zbl 0797.46026
[5] Coifman, R. R. and Weiss G.: Analyse harmonique non-commutative sur certains espaces homogènes . Lecture Notes in Mathematics 242 . Springer-Verlag, Berlin-New York, 1971. · Zbl 0224.43006
[6] Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415. · Zbl 0859.46022
[7] Hajłasz, P.: Sobolev spaces on metric-measure spaces. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) , 173-218. Contemp. Math. 338 . Amer. Math. Soc. Providence, RI, 2003. · Zbl 1048.46033
[8] Hajłasz, P. and Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoamericana 14 (1998), no. 3, 601-622. · Zbl 1155.46306
[9] Hajłasz, P. and Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688. · Zbl 0954.46022
[10] Hajłasz, P., Koskela, P. and Tuominen, T.: Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254 (2008), no. 5, 1217-1234. · Zbl 1136.46029
[11] Harjulehto, P.: Sobolev extension domains on metric spaces of homogeneous type. Real Anal. Exchange 27 (2001/02), 583-597. · Zbl 1082.46024
[12] Heinonen, J.: Lectures on analysis on metric spaces . Universitext. Springer-Verlag, New York, 2001. · Zbl 0985.46008
[13] Heinonen, J. and Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61. · Zbl 0915.30018
[14] Jones, P. W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981), 71-88. · Zbl 0489.30017
[15] Keith, S. and Zhong, X.: The Poincaré inequality is an open ended condition. Ann. of Math. (2) 167 (2008), no. 2, 575-599. · Zbl 1180.46025
[16] Koskela, P. and MacManus, P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131 (1998), no. 1, 1-17. · Zbl 0918.30011
[17] Koskela, P. and Saksman, E.: Pointwise characterizations of Hardy-Sobolev functions. To appear in Math. Res. Lett. · Zbl 1165.46013
[18] Macías, R. A. and Segovia, C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. in Math. 33 (1979), 271-309. · Zbl 0431.46019
[19] Mattila, P.: Geometry of sets and measures in Euclidean spaces . Cambridge Studies in Advanced Mathematics 44 . Cambridge University Press, Cambridge, 1995. · Zbl 0819.28004
[20] Nhieu, D.-M.: Extension of Sobolev spaces on the Heisenberg group. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1559-1564. · Zbl 0841.43007
[21] Nhieu, D.-M.: The Neumann problem for sub-Laplacians on Carnot groups and the extension theorem for Sobolev spaces. Ann. Mat. Pura Appl. (4) 180 (2001), 1-25. · Zbl 1052.46026
[22] Romanov, A. S.: On a generalization of Sobolev spaces. Siberian Math. J. 39 (1998), 821-824. · Zbl 0917.46022
[23] Semmes, S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.) 2 (1996), 155-295. · Zbl 0870.54031
[24] Shanmugalingam, N.: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16 (2000), 243-279. · Zbl 0974.46038
[25] Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45 (2001), 1021-1050. · Zbl 0989.31003
[26] Shvartsman, P.: On extensions of Sobolev functions defined on regular subsets of metric measure spaces. J. Approx. Theory 144 (2007), 139-161. · Zbl 1121.46033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.