×

Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. (English) Zbl 1226.54061

Summary: We prove some common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces both in the sense of Kramosil and Michalek and in the sense of George and Veeramani by using the new property and give some examples. Our results improve and generalize the main results of D. Mihet in [Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 7, 2184–2188 (2010; Zbl 1195.54082)] and many fixed point theorems in fuzzy metric spaces.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology

Citations:

Zbl 1195.54082
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2] A. George and P. Veeramani, “On some results in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 64, no. 3, pp. 395-399, 1994. · Zbl 0843.54014 · doi:10.1016/0165-0114(94)90162-7
[3] O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 12, no. 3, pp. 215-229, 1984. · Zbl 0558.54003 · doi:10.1016/0165-0114(84)90069-1
[4] I. Kramosil and J. Michalek, “Fuzzy metrics and statistical metric spaces,” Kybernetika, vol. 11, no. 5, pp. 326-334, 1975. · Zbl 0319.54002
[5] C. Mongkolkeha and P. Kumam, “Fixed point and common fixed point theorems for generalized weak contraction mappings of integral type in modular spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 2011, Article ID 705943, 12 pages, 2011. · Zbl 1221.47102 · doi:10.1155/2011/705943
[6] W. Sintunavarat and P. Kumam, “Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition,” Applied Mathematics Letters, vol. 22, no. 12, pp. 1877-1881, 2009. · Zbl 1225.54028 · doi:10.1016/j.aml.2009.07.015
[7] W. Sintunavarat and P. Kumam, “Weak condition for generalized multi-valued (f, \alpha , \beta )-weak contraction mappings,” Applied Mathematics Letters, vol. 24, no. 4, pp. 460-465, 2011. · Zbl 1206.54064 · doi:10.1016/j.aml.2010.10.042
[8] W. Sintunavart and P. Kumam, “Coincidence and common fixed points for generalized contraction multi-valued mappings,” Journal of Computational Analysis and Applications, vol. 13, no. 2, pp. 362-367, 2011. · Zbl 1221.47095
[9] W. Sintunavart and P. Kumam, “Gregus-type common fixed point theorems for tangential multi-valued mappings of integral type in metric spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 2011, Article ID 923458, 12 pages, 2011. · Zbl 1215.54026 · doi:10.1155/2011/923458
[10] W. Sintunavart and P. Kumam, “Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type,” Journal of Inequalities and Applications, vol. 2011, no. 3, 2011. · Zbl 1288.54044 · doi:10.1186/1029-242X-2011-3
[11] S. Heilpern, “Fuzzy mappings and fixed point theorem,” Journal of Mathematical Analysis and Applications, vol. 83, no. 2, pp. 566-569, 1981. · Zbl 0486.54006 · doi:10.1016/0022-247X(81)90141-4
[12] R. K. Bose and D. Sahani, “Fuzzy mappings and fixed point theorems,” Fuzzy Sets and Systems, vol. 21, no. 1, pp. 53-58, 1987. · Zbl 0609.54032 · doi:10.1016/0165-0114(87)90152-7
[13] Y. J. Cho, S. Sedghi, and N. Shobe, “Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2233-2244, 2009. · Zbl 1197.54013 · doi:10.1016/j.chaos.2007.06.108
[14] B. Deshpande, “Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces,” Chaos, Solitons and Fractals, vol. 42, no. 5, pp. 2722-2728, 2009. · Zbl 1198.54009 · doi:10.1016/j.chaos.2009.03.178
[15] M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385-389, 1988. · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[16] H. M. Golshan, H. Naraghi, and M. Kazemi, “T-best approximation in fuzzy and intuitionistic fuzzy metric spaces,” Journal of Nonlinear Analysis and Optimization, vol. 2, no. 1, pp. 75-83, 2011. · Zbl 1412.54020
[17] S. N. Je and N. A. Baba\vceva, “Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition,” Chaos, Solitons and Fractals, vol. 37, no. 3, pp. 675-687, 2008. · Zbl 1137.54328 · doi:10.1016/j.chaos.2006.09.048
[18] B. S. Lee and S. J. Cho, “A fixed point theorem for contractive-type fuzzy mappings,” Fuzzy Sets and Systems, vol. 61, no. 3, pp. 309-312, 1994. · Zbl 0831.54036 · doi:10.1016/0165-0114(94)90173-2
[19] R. A. Rashwan and M. A. Ahmed, “Common fixed point theorems for fuzzy mappings,” Archivum Mathematicum (Brno), vol. 38, no. 3, pp. 219-226, 2002. · Zbl 1068.54008
[20] B. E. Rhoades, “A common fixed point theorem for a sequence of fuzzy mappings,” International Journal of Mathematics and Mathematical Sciences, vol. 18, no. 3, pp. 447-449, 1995. · Zbl 0840.47049 · doi:10.1155/S0161171295000561
[21] D. Butnariu, “Fixed points for fuzzy mappings,” Fuzzy Sets and Systems, vol. 7, no. 2, pp. 191-207, 1982. · Zbl 0473.90087 · doi:10.1016/0165-0114(82)90049-5
[22] V. H. Badshah and V. Joshi, “Semicompatibility and fixed point theorems for reciprocally continuous maps in a fuzzy metric space,” Journal of Applied Mathematics, vol. 2011, Article ID 410214, 12 pages, 2011. · Zbl 1213.54010 · doi:10.1155/2011/410214
[23] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, NY, USA, 1983. · Zbl 0546.60010
[24] K. Menger, “Statistical metrics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 28, pp. 535-537, 1942. · Zbl 0063.03886 · doi:10.1073/pnas.28.12.535
[25] A. George and P. Veeramani, “On some results of analysis for fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 90, no. 3, pp. 365-368, 1997. · Zbl 0917.54010 · doi:10.1016/S0165-0114(96)00207-2
[26] D. Mihe\ct, “A banach contraction theorem in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 144, no. 3, pp. 431-439, 2004. · Zbl 1052.54010 · doi:10.1016/S0165-0114(03)00305-1
[27] D. Mihe\ct, “On fuzzy contractive mappings in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 158, no. 8, pp. 915-921, 2007. · Zbl 1152.54008 · doi:10.1155/2007/87471
[28] R. Vasuki and P. Veeramani, “Fixed point theorems and cauchy sequences in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 135, no. 3, pp. 415-417, 2003. · Zbl 1029.54012 · doi:10.1016/S0165-0114(02)00132-X
[29] P. Veeramani, “Best approximation in fuzzy metric spaces,” Journal of Fuzzy Mathematics, vol. 9, no. 1, pp. 75-80, 2001. · Zbl 0986.54006
[30] G. Jungck and B. E. Rhoades, “Fixed points for set valued functions without continuity,” Indian Journal of Pure and Applied Mathematics, vol. 29, no. 3, pp. 227-238, 1998. · Zbl 0904.54034
[31] P. V. Subrahmanyam, “A common fixed point theorem in fuzzy metric spaces,” Information Sciences, vol. 83, no. 3-4, pp. 109-112, 1995. · Zbl 0867.54017 · doi:10.1016/0020-0255(94)00043-B
[32] G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no. 4, pp. 261-263, 1976. · Zbl 0321.54025 · doi:10.2307/2318216
[33] M. Aamri and D. El Moutawakil, “Some new common fixed point theorems under strict contractive conditions,” Journal of Mathematical Analysis and Applications, vol. 270, no. 1, pp. 181-188, 2002. · Zbl 1008.54030 · doi:10.1016/S0022-247X(02)00059-8
[34] D. Mihe\ct, “Fixed point theorems in fuzzy metric spaces using property E.A,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 7, pp. 2184-2188, 2010. · Zbl 1195.54082 · doi:10.1016/j.na.2010.05.044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.