×

On collinear closed one-forms. (English) Zbl 1226.57040

For a closed, oriented manifold \(M\), a smooth 1-form \(\alpha\) determines a foliation \(\mathcal F_\alpha\) on \(M\setminus\text{Sing}\;\alpha\) which extends to a singular foliation \(\overline{\mathcal F_\alpha}\), where Sing \(\alpha=\{x\in M\;/\;\alpha_x=0\}\). Conditions for \(\mathcal F_\alpha=\mathcal F_\beta\) or \(\overline{\mathcal F_\alpha}= \overline{\mathcal F_\beta}\), for \(\beta\) another 1-form, are considered. For example if Sing \(\alpha\) and Sing \(\beta\) are nowhere dense then \(\overline{\mathcal F_\alpha}= \overline{\mathcal F_\beta}\) if and only if \(\alpha\wedge\beta=0\). It is also shown that \(\mathcal F_\alpha\) has a compact leaf if and only if there is a smooth function \(f\) such that \(df\wedge\alpha=0\) and Supp \(\alpha\cap \text{Supp }\;df\not=\varnothing\).

MSC:

57R30 Foliations in differential topology; geometric theory
58A10 Differential forms in global analysis
Full Text: DOI

References:

[1] DOI: 10.2307/2373226 · Zbl 0136.20903 · doi:10.2307/2373226
[2] DOI: 10.1007/BF01388736 · Zbl 0577.58021 · doi:10.1007/BF01388736
[3] Mel’nikova, Moscow Univ. Math. Bull. 54 pp 1– (1999)
[4] DOI: 10.1007/BF02312769 · Zbl 0917.57022 · doi:10.1007/BF02312769
[5] Mel’nikova, Moscow Univ. Math. Bull. 51 pp 33– (1996)
[6] DOI: 10.1007/s10587-009-0015-5 · Zbl 1224.57010 · doi:10.1007/s10587-009-0015-5
[7] DOI: 10.1007/BF02304889 · Zbl 0857.57030 · doi:10.1007/BF02304889
[8] Gelbukh, Studia Sci. Math. Hungar. 46 pp 547– (2009)
[9] Kahn, Introduction to Global Analysis (1980)
[10] DOI: 10.1016/j.difgeo.2004.10.006 · Zbl 1070.57016 · doi:10.1016/j.difgeo.2004.10.006
[11] Hurewicz, Dimension Theory (1996)
[12] DOI: 10.1063/1.2363258 · Zbl 1112.83019 · doi:10.1063/1.2363258
[13] Hehl, Acta Phys. Polon. B 29 pp 1113– (1998)
[14] DOI: 10.1016/S0040-9383(97)82730-9 · Zbl 0911.58001 · doi:10.1016/S0040-9383(97)82730-9
[15] DOI: 10.1016/j.geomphys.2010.10.010 · Zbl 1210.57027 · doi:10.1016/j.geomphys.2010.10.010
[16] Farber, Topology of Closed One-forms (2004) · Zbl 1052.58016 · doi:10.1090/surv/108
[17] Bott, Differential Forms in Algebraic Topology (1982) · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[18] DOI: 10.1103/PhysRevD.64.024026 · doi:10.1103/PhysRevD.64.024026
[19] DOI: 10.1081/AGB-120004502 · Zbl 1087.13500 · doi:10.1081/AGB-120004502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.