×

Fractional moment bounds and disorder relevance for pinning models. (English) Zbl 1226.82028

Summary: We study the critical point of directed pinning/wetting models with quenched disorder. The distribution \(K(\cdot)\) of the location of the first contact of the (free) polymer with the defect line is assumed to be of the form \(K(n)= n^{-\alpha -1} L(n)\), with \(\alpha \geq 0\) and \(L(\cdot)\) slowly varying. The model undergoes a (de)-localization phase transition: the free energy (per unit length) is zero in the delocalized phase and positive in the localized phase. For \(\alpha<1/2\) disorder is irrelevant: quenched and annealed critical points coincide for small disorder, as well as quenched and annealed critical exponents. The same has been proven also for \(\alpha = 1/2\), but under the assumption that \(L(\cdot )\) diverges sufficiently fast at infinity, a hypothesis that is not satisfied in the \((1+1)\)-dimensional wetting model considered in [B. Derrida, V. Hakim and J. Vannimenus, J. Stat. Phys. 66, No. 5–6, 1189–1213 (1992; Zbl 0900.82051); G. Forgacs, J. M. Luck, Th. M. Nieuwenhuizen and H. Orland, “Wetting of a disordered substrate: exact critical behavior in two dimensions”, Phys. Rev. Lett. 57, 2184–2187 (1986)], where \(L(\cdot )\) is asymptotically constant. Here we prove that, if \(1/2 < \alpha < 1\) or \(\alpha > 1\), then quenched and annealed critical points differ whenever disorder is present, and we give the scaling form of their difference for small disorder. In agreement with the so-called Harris criterion, disorder is therefore relevant in this case. In the marginal case \(\alpha = 1/2\), under the assumption that \(L(\cdot )\) vanishes sufficiently fast at infinity, we prove that the difference between quenched and annealed critical points, which is smaller than any power of the disorder strength, is positive: disorder is marginally relevant. Again, the case considered in [loc. cit.] is out of our analysis and remains open.
The results are achieved by setting the parameters of the model so that the annealed system is localized, but close to criticality, and by first considering a quenched system of size that does not exceed the correlation length of the annealed model. In such a regime we can show that the expectation of the partition function raised to a suitably chosen power \({\gamma \in (0, 1)}\) is small. We then exploit such an information to prove that the expectation of the same fractional power of the partition function goes to zero with the size of the system, a fact that immediately entails that the quenched system is delocalized.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics

Citations:

Zbl 0900.82051

References:

[1] Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993) · Zbl 0782.60044 · doi:10.1007/BF02099760
[2] Aizenman M., Schenker J.H., Friedrich R.M., Hundertmark D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001) · Zbl 1038.82038 · doi:10.1007/s002200100441
[3] Alexander K.S.: The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279, 117–146 (2008) · Zbl 1175.82034 · doi:10.1007/s00220-008-0425-5
[4] Alexander K.S., Sidoravicius V.: Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16, 636–669 (2006) · Zbl 1145.82010 · doi:10.1214/105051606000000015
[5] Alexander, K.S., Zygouras, N.: Quenched and annealed critical points in polymer pinning models. http://arxiv.org/abs0805.1708V1[math.PR] , 2008 · Zbl 1188.82154
[6] Bingham N.H., Goldie C.M., Teugels J.L.: Regular variation. Cambridge University Press, Cambridge (1987) · Zbl 0617.26001
[7] Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. http://arxiv.org/abs:0807.2752V1[math.PR] , 2008
[8] Bolthausen, E., Caravenna, F., de Tilière, B.: The quenched critical point of a diluted disordered polymer model. Stochastic Process. Appl. (to appear), http://arxiv.org/abs/0711.0141V2[math.PR] , 2007 · Zbl 1161.60340
[9] Buffet E., Patrick A., Pulé J.V.: Directed polymers on trees: a martingale approach. J. Phys. A Math. Gen. 26, 1823–1834 (1993) · Zbl 0773.60035 · doi:10.1088/0305-4470/26/8/011
[10] Chayes J.T., Chayes L., Fisher D.S., Spencer T.: Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57, 2999–3002 (1986) · doi:10.1103/PhysRevLett.57.2999
[11] Coluzzi B., Yeramian E.: Numerical evidence for relevance of disorder in a Poland-Scheraga DNA denaturation model with self-avoidance: Scaling behavior of average quantities. Eur. Phys. J. B 56, 349–365 (2007) · doi:10.1140/epjb/e2007-00140-5
[12] Derrida B., Hakim V., Vannimenus J.: Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66, 1189–1213 (1992) · Zbl 0900.82051 · doi:10.1007/BF01054419
[13] Doney R.A.: One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Rel. Fields 107, 451–465 (1997) · Zbl 0883.60022 · doi:10.1007/s004400050093
[14] von Dreifus H.: Bounds on the critical exponents of disordered ferromagnetic models. Ann. Inst. H. Poincaré Phys. Théor. 55, 657–669 (1991) · Zbl 0741.60098
[15] Evans M.R., Derrida B.: Improved bounds for the transition temperature of directed polymers in a finite-dimensional random medium. J. Stat. Phys. 69, 427–437 (1992) · Zbl 0893.60098 · doi:10.1007/BF01053800
[16] Fisher M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984) · Zbl 0589.60098 · doi:10.1007/BF01009436
[17] Forgacs G., Luck J.M., Nieuwenhuizen Th.M., Orland H.: Wetting of a disordered substrate: exact critical behavior in two dimensions. Phys. Rev. Lett. 57, 2184–2187 (1986) · doi:10.1103/PhysRevLett.57.2184
[18] Gangardt D.M., Nechaev S.K.: Wetting transition on a one-dimensional disorder. J. Stat. Phys. 130, 483–502 (2008) · Zbl 1139.82311 · doi:10.1007/s10955-007-9433-7
[19] Garsia A., Lamperti J.: A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37, 221–234 (1963) · Zbl 0114.08803 · doi:10.1007/BF02566974
[20] Giacomin G.: Random Polymer Models. Imperial College Press/World Scientific, River Edge, NJ (2007) · Zbl 1125.82001
[21] Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. Probab. Theory Rel. Fields (to appear), http://arxiv.org/abs/0711.4649V2[math.PR] , 2007 · Zbl 1190.60093
[22] Giacomin, G., Lacoin, H., Toninelli, F.L.: Marginal relevance of disorder for pinning models. http://arxiv.org/abs/0811.0723V1[math-ph] , 2008 · Zbl 1189.60173
[23] Giacomin G., Toninelli F.L.: Estimates on path delocalization for copolymers at selective interfaces. Probab. Theor. Rel. Fields 133, 464–482 (2005) · Zbl 1098.60089 · doi:10.1007/s00440-005-0439-2
[24] Giacomin G., Toninelli F.L.: Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006) · Zbl 1113.82032 · doi:10.1007/s00220-006-0008-2
[25] Giacomin, G., Toninelli, F.L.: On the irrelevant disorder regime of pinning models. preprint (2007). http://arxiv.org/abs/0707.3340V1[math.PR]
[26] Harris A.B.: Effect of Random Defects on the Critical Behaviour of Ising Models. J. Phys. C 7, 1671–1692 (1974) · doi:10.1088/0022-3719/7/9/009
[27] Kafri Y., Mukamel D., Peliti L.: Why is the DNA denaturation transition first order?. Phys. Rev. Lett. 85, 4988–4991 (2000) · doi:10.1103/PhysRevLett.85.4988
[28] Toninelli F.L.: A replica-coupling approach to disordered pinning models. Commun. Math. Phys. 280, 389–401 (2008) · Zbl 1207.82026 · doi:10.1007/s00220-008-0469-6
[29] Toninelli F.L.: Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. 18, 1569–1587 (2008) · Zbl 1157.60090 · doi:10.1214/07-AAP496
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.