zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stochastic programming duality approach to inventory centralization games. (English) Zbl 1226.90052
Summary: We present a unified approach to study a class of cooperative games arising from inventory centralization. The optimization problems corresponding to the inventory games are formulated as stochastic programs. We observe that the strong duality of stochastic linear programming not only directly leads to a series of recent results concerning the nonemptiness of the core of such games, but also suggests a way to find an element in the core. The proposed approach is also applied to inventory games with concave ordering cost. In particular, we show that the newsvendor game with concave ordering cost has a nonempty core. Finally, we prove that it is NP-hard to determine whether a given allocation is in the core of the inventory games even in a very simple setting.

MSC:
90C15Stochastic programming
91A12Cooperative games
90B05Inventory, storage, reservoirs
Software:
SUTIL
WorldCat.org
Full Text: DOI