zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Best proximity points: Optimal solutions. (English) Zbl 1226.90135
Summary: This article elicits a best proximity point theorem for non-self-proximal contractions. As a consequence, it ascertains the existence of an optimal approximate solution to some equations for which it is plausible that there is no solution. Moreover, an algorithm is exhibited to determine such an optimal approximate solution designated as a best proximity point. It is interesting to observe that the preceding best proximity point theorem includes the famous Banach contraction principle.

MSC:
90C48Programming in abstract spaces
WorldCat.org
Full Text: DOI
References:
[1] Sadiq Basha, S.: Extensions of Banach’s contraction principle. Numer. Funct. Anal. Optim. 31(5), 569--576 (2010). doi: 10.1080/01630563.2010.485713 · Zbl 1200.54021 · doi:10.1080/01630563.2010.485713
[2] Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665--3671 (2009) · Zbl 1197.47067 · doi:10.1016/j.na.2008.07.022
[3] Anthony Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001--1006 (2006) · Zbl 1105.54021 · doi:10.1016/j.jmaa.2005.10.081
[4] Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69(11), 3790--3794 (2008) · Zbl 1169.54021 · doi:10.1016/j.na.2007.10.014
[5] Karpagam, S., Agrawal, S.: Best proximity point theorems for p-cyclic Meir--Keeler contractions, Fixed Point Theory Appl., 2009, Art. ID 197308, 9 pp. · Zbl 1172.54028
[6] Anuradha, J., Veeramani, P.: Proximal pointwise contraction. Topol. Appl. 156(18), 2942--2948 (2009) · Zbl 1180.47035 · doi:10.1016/j.topol.2009.01.017
[7] Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximinal normal structure and relatively nonexpanisve mappings. Stud. Math. 171(3), 283--293 (2005) · Zbl 1078.47013 · doi:10.4064/sm171-3-5
[8] Sankar Raj, V., Veeramani, P.: Best proximity pair theorems for relatively nonexpansive mappings. Appl. Gen. Topol. 10(1), 21--28 (2009) · Zbl 1213.47062
[9] Sadiq Basha, S.: Best proximity points: Global optimal approximate solutions. J. Glob. Optim. 49, 15--21 (2011) · Zbl 1208.90128 · doi:10.1007/s10898-009-9521-0
[10] Al-Thagafi, M.A., Shahzad, N.: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209--1216 (2009) · Zbl 1225.47056 · doi:10.1016/j.na.2008.02.004
[11] Al-Thagafi, M.A., Shahzad, N.: Best proximity sets and equilibrium pairs for a finite family of multimaps. Fixed Point Theory Appl. 2008, Art. ID 457069, 10 pp. · Zbl 1169.47040
[12] Kim, W.K., Kum, S., Lee, K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68(8), 2216--2227 (2008) · Zbl 1136.91309 · doi:10.1016/j.na.2007.01.057
[13] Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851--862 (2003) · Zbl 1054.47040 · doi:10.1081/NFA-120026380
[14] Sadiq Basha, S., Veeramani, P.: Best approximations and best proximity pairs. Acta Sci. Math. 63, 289--300 (1997) · Zbl 0909.47042
[15] Sadiq Basha, S., Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119--129 (2000) · Zbl 0965.41020 · doi:10.1006/jath.1999.3415
[16] Sadiq Basha, S., Veeramani, P., Pai, D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237--1246 (2001) · Zbl 1021.47027
[17] Srinivasan, P.S.: Best proximity pair theorems. Acta Sci. Math. 67, 421--429 (2001) · Zbl 1012.47031
[18] Wlodarczyk, K., Plebaniak, R., Banach, A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70(9), 3332--3341 (2009) · Zbl 1182.54024 · doi:10.1016/j.na.2008.04.037
[19] Wlodarczyk, K., Plebaniak, R., Banach, A.: Erratum to: ”Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces”. Nonlinear Anal. 70, 3332--3341 (2009). Nonlinear Anal. 71, 3583--3586 (2009). doi: 10.1016/j.na.2008.04.037 · Zbl 1182.54024 · doi:10.1016/j.na.2008.04.037
[20] Wlodarczyk, K., Plebaniak, R., Obczynski, C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794--805 (2010) · Zbl 1185.54020 · doi:10.1016/j.na.2009.07.024
[21] Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234--240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[22] Prolla, J.B.: Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5, 449--455 (1982--1983) · Zbl 0513.41015 · doi:10.1080/01630568308816149
[23] Reich, S.: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62, 104--113 (1978) · Zbl 0375.47031 · doi:10.1016/0022-247X(78)90222-6
[24] Sehgal, V.M., Singh, S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 102, 534--537 (1988) · Zbl 0672.47043
[25] Sehgal, V.M., Singh, S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10, 181--184 (1989) · Zbl 0635.41022 · doi:10.1080/01630568908816298
[26] Vetrivel, V., Veeramani, P., Bhattacharyya, P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13, 397--402 (1992) · Zbl 0763.41026 · doi:10.1080/01630569208816486