×

zbMATH — the first resource for mathematics

Trees, functional equations, and combinatorial Hopf algebras. (English) Zbl 1227.05272
Summary: One of the main virtues of trees is the representation of formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combinatorial Hopf algebras, the simplest examples yield interesting algebraic identities or enumerative results.

MSC:
05E15 Combinatorial aspects of groups and algebras (MSC2010)
05C05 Trees
16T05 Hopf algebras and their applications
Software:
OEIS
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Björner, A.; Wachs, M., \(q\)-hook length formulas for forests, J. combin. theory ser. A, 52, 165-187, (1989) · Zbl 0697.06002
[2] Björner, A.; Wachs, M., Permutation statistics and linear extensions of posets, J. combin. theory ser. A, 58, 85-114, (1991) · Zbl 0742.05084
[3] Chapoton, F., Algèbres de Hopf des permutoèdres, associaèedres et hypercubes, Adv. math., 150, 264-275, (2000) · Zbl 0958.16038
[4] W.Y.C. Chen, L.L.M. Yang, On the hook length formula for binary trees, preprint · Zbl 1152.05303
[5] Duchamp, G.; Hivert, F.; Thibon, J.-Y., Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. algebra comput., 12, 671-717, (2002) · Zbl 1027.05107
[6] R.X. Du, F. Liu, \((k, m)\)-Catalan Numbers and Hook Length Polynomials for Plane Trees, preprint. arXiv: math.CO/0501147
[7] Foata, D.; Schützenberger, M.P., Major index and inversion number of permutations, Math. nachr., 83, 143-159, (1970) · Zbl 0319.05002
[8] Gessel, I.M.; Seo, S., A refinement of cayley’s formula for trees, Electron. J. combin., 11, 2, (2004), R27 (23 pages)
[9] Graham, R.L.; Knuth, D.E.; Patashnik, O., Concrete mathematics, (1989), Addison-Wesley Reading Mass. · Zbl 0668.00003
[10] Hivert, F.; Novelli, J.-C.; Thibon, J.-Y., The algebra of binary search trees, Theoret. comput. sci., 339, 129-165, (2005) · Zbl 1072.05052
[11] Knuth, D.E., ()
[12] Krob, D.; Leclerc, B.; Thibon, J.-Y., Noncommutative symmetric functions II: transformations of alphabets, Internat. J. algebra comput., 7, 181-264, (1997) · Zbl 0907.05055
[13] Loday, J.-L.; Ronco, M.O., Hopf algebra of the planar binary trees, Adv. math., 139, 2, 293-309, (1998) · Zbl 0926.16032
[14] Loday, J.-L.; Ronco, M.O., Trialgebras and families of polytopes, Contemp. math., 346, (2004) · Zbl 1065.18007
[15] Macdonald, I.G., Symmetric functions and Hall polynomials, (1995), Oxford University Press · Zbl 0487.20007
[16] Novelli, J.-C.; Thibon, J.-Y., Construction de trigèbres dendriformes, C. R. acad. sci. Paris, Sér. I, 342, 365-369, (2006) · Zbl 1101.17003
[17] J.-C. Novelli, J.-Y. Thibon, Noncommutative symmetric functions and lagrange inversion, Adv. Appl. Math., in press (doi:10.1016/j.aam.2007.05.005), preprint ArXiv:math.CO/0512570 · Zbl 1236.05202
[18] A. Postnikov, Permutohedra, associahedra, and beyond. Stanley Conference, 26 June 2004 MIT. arXiv:math.CO/0507163
[19] Seo, S., A combinatorial proof of postnikov’s identity and a generalized enumeration of labeled trees, Electron. J. combin., 11, 2, (2004-2005) · Zbl 1082.05008
[20] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (electronic). http://www.research.att.com/ njas/sequences/ · Zbl 1274.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.