×

zbMATH — the first resource for mathematics

Symmetry phenomena in linear forms in multiple zeta values. (Phénomènes de symétrie dans des formes linéaires en polyzêtas.) (English) Zbl 1227.11097
Summary: We give two generalizations, in arbitrary depth, of the symmetry phenomenon used by Ball-Rivoal to prove that infinitely many values of Riemann \(\zeta\)-function at odd integers are irrational. These generalizations concern multiple series of hypergeometric type, which can be written as linear forms in some specific multiple zeta values. The proof makes use of the regularization procedure for multiple zeta values with logarithmic divergence.

MSC:
11M32 Multiple Dirichlet series and zeta functions and multizeta values
11J72 Irrationality; linear independence over a field
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apéry R., Astérisque 61 pp 11– (1979)
[2] DOI: 10.1007/s002220100149 · Zbl 1048.37046 · doi:10.1007/s002220100149
[3] DOI: 10.1007/s003659900089 · Zbl 0936.33009 · doi:10.1007/s003659900089
[4] Ho\currencyman M., Pacific J. Math. 152 pp 275– (1992)
[5] DOI: 10.1007/s102400200004 · Zbl 1050.11066 · doi:10.1007/s102400200004
[6] G., Acta Arith. 97 pp 3– (2001)
[7] Rivoal T., C. R. Acad. Sci. Paris (I) 331 pp 4– (2000)
[8] DOI: 10.1007/s002220200218 · Zbl 1042.11043 · doi:10.1007/s002220200218
[9] Vasilyev D., Dokl. Nats. Akad. Nauk Belarusi 45 pp 5– (2001)
[10] Waldschmidt M., J. Th. Nombres Bordeaux 12 pp 2– (2000)
[11] Zudilin W., J. Th. Nombres Bordeaux 15 pp 2– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.