zbMATH — the first resource for mathematics

Locally conformally Kähler metrics on Kato surfaces. (English) Zbl 1227.32026
A Kato surface, or a surface with a global spherical shell, cannot be Kähler since its first Betti number is odd. In this work, the author shows that every Kato surface admits a locally conformally Kähler metric. As a consequence, the universal covering of a Kato surface is Kähler.

32J15 Compact complex surfaces
32Q15 Kähler manifolds
32Q30 Uniformization of complex manifolds
Full Text: DOI arXiv
[1] F. A. Belgun, On the metric structure of non-Kähler complex surfaces , Math. Ann. 317 (2000), 1-40. · Zbl 0988.32017
[2] M. Brunella, Locally conformally Kähler metrics on certain non-Kählerian surfaces , Math. Ann. 346 (2010), 629-639. · Zbl 1196.32015
[3] G. Dloussky, Structure des surfaces de Kato , Mém. Soc. Math. France (N.S.), no. 14 (1984). · Zbl 0543.32012
[4] M. Kato, “Compact complex manifolds containing ‘global’ spherical shells” in Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977) , Kinokuniya, Tokyo, 1978, 45-84. · Zbl 0379.32023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.