×

On nonseparated three-point boundary value problems for linear functional differential equations. (English) Zbl 1227.34067

Summary: For a system of linear functional differential equations, we consider a three-point problem with nonseparated boundary conditions determined by singular matrices. We show that, to investigate such a problem, it is often useful to reduce it to a parametric family of two-point boundary value problems for a suitably perturbed differential system. The auxiliary parametrised two-point problems are then studied by a method based upon a special kind of successive approximations constructed explicitly, whereas the values of the parameters that correspond to solutions of the original problem are found from certain numerical determining equations. We prove the uniform convergence of the approximations and establish some properties of the limit and determining functions.

MSC:

34K10 Boundary value problems for functional-differential equations
34K06 Linear functional-differential equations
34K07 Theoretical approximation of solutions to functional-differential equations

References:

[1] R. P. Agarwal and D. O’Regan, “A survey of recent results for initial and boundary value problems singular in the dependent variable,” in Handbook of Differential Equations, pp. 1-68, Elsevier, Amsterdam, The Netherlands, 2004. · Zbl 1096.34001
[2] N. N. Bogoljubov, J. A. Mitropol’skiĭ, and A. M. Samoĭlenko, The Method of Accelerated Convergence in Nonlinear Mechanics, Naukova Dumka, Kiev, Ukraine, 1969.
[3] M. Farkas, Periodic Motions, vol. 104 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1994. · Zbl 0805.34037
[4] M. Fe\vckan, “Minimal periods of periodic solutions,” Miskolc Mathematical Notes, vol. 7, no. 2, pp. 121-139, 2006. · Zbl 1120.34022
[5] I. Kiguradze and S. Mukhigulashvili, “On periodic solutions of two-dimensional nonautonomous differential systems,” Nonlinear Analysis, vol. 60, no. 2, pp. 241-256, 2005. · Zbl 1069.34062 · doi:10.1016/j.na.2004.07.053
[6] I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations, Izdat. Tbilis. Univ., Tbilisi, Georgia, 1975. · Zbl 0307.34003
[7] E. F. Mishchenko and N. K. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, vol. 13 of Mathematical Concepts and Methods in Science and Engineering, Plenum Press, New York, NY, USA, 1980, translated from the Russian by F. M. C. Goodspee. · Zbl 0482.34004
[8] J. Moser, “A rapidly convergent iteration method and non-linear differential equations. II,” Annali della Scuola Normale Superiore di Pisa, vol. 20, pp. 499-535, 1966. · Zbl 0144.18202
[9] J. Moser, “A rapidly convergent iteration method and non-linear partial differential equations. I,” Annali della Scuola Normale Superiore di Pisa, vol. 20, pp. 265-315, 1966. · Zbl 0144.18202
[10] S. K. Ntouyas, “Nonlocal initial and boundary value problems: a survey,” in Handbook of Differential Equations: Ordinary Differential Equations. Vol. II, pp. 461-557, Elsevier, Amsterdam, The Netherlands, 2005. · Zbl 1098.34011
[11] F. Sadyrbaev, “Multiplicity of solutions for second order two-point boundary value problems with asymptotically asymmetric nonlinearities at resonance,” Georgian Mathematical Journal, vol. 14, no. 2, pp. 351-360, 2007. · Zbl 1130.34011
[12] M. Ronto and A. M. Samoilenko, Numerical-Analytic Methods in the Theory of Boundary-Value Problems, World Scientific, River Edge, NJ, USA, 2000, with a preface by Yu. A. Mitropolsky and an appendix by the authors and S. I. Trofimchu. · Zbl 0957.65074 · doi:10.1142/9789812813602
[13] R. P. Agarwal, D. O’Regan, and S. Stan\vek, “Positive and maximal positive solutions of singular mixed boundary value problem,” Central European Journal of Mathematics, vol. 7, no. 4, pp. 694-716, 2009. · Zbl 1193.34039 · doi:10.2478/s11533-009-0049-9
[14] A. Cabada, A. Lomtatidze, and M. Tvrdý, “Periodic problem involving quasilinear differential operator and weak singularity,” Advanced Nonlinear Studies, vol. 7, no. 4, pp. 629-649, 2007. · Zbl 1146.34016
[15] A. Capietto, J. Mawhin, and F. Zanolin, “A continuation approach to superlinear periodic boundary value problems,” Journal of Differential Equations, vol. 88, no. 2, pp. 347-395, 1990. · Zbl 0718.34053 · doi:10.1016/0022-0396(90)90102-U
[16] A. Capietto, J. Mawhin, and F. Zanolin, “Continuation theorems for periodic perturbations of autonomous systems,” Transactions of the American Mathematical Society, vol. 329, no. 1, pp. 41-72, 1992. · Zbl 0748.34025 · doi:10.2307/2154076
[17] L. Cesari, “Functional analysis and periodic solutions of nonlinear differential equations,” Contributions to Differential Equations, vol. 1, pp. 149-187, 1963. · Zbl 0132.07101
[18] L. Cesari, Nonlinear Analysis and Alternative Methods, Accademia Nazionale dei Lincei, Rome, Italy, 1977, lecture series held in April 1974, contributi del centro linceo interdisciplinare di scienze matematiche e loro applicazioni, 39.
[19] R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, vol. 568 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1977. · Zbl 0339.47031
[20] J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York, NY, USA, 1963. · Zbl 0115.07401
[21] M. A. Krasnosel’skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Y. Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff, Groningen, The Netherlands, 1972, translated from the Russian by D. Louvis.
[22] M. A. Krasnosel’skiĭ and P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis, vol. 263 of Fundamental Principles of Mathematical Sciences, Springer, Berlin, Germany, 1984, translated from the Russian by C. C. Fenske.
[23] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, vol. 40 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1979, expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June, 1977. · Zbl 0414.34025
[24] I. Rachunková, “Strong singularities in mixed boundary value problems,” Mathematica Bohemica, vol. 131, no. 4, pp. 393-409, 2006. · Zbl 1114.34020
[25] I. Rachunková, S. Stan\vek, and M. Tvrdý, Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, vol. 5 of Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation, New York, NY, USA, 2008. · Zbl 1228.34003
[26] S. Stan\vek, “Positive solutions of singular Dirichlet boundary value problems with time and space singularities,” Nonlinear Analysis, vol. 71, no. 10, pp. 4893-4905, 2009. · Zbl 1192.34027 · doi:10.1016/j.na.2009.03.043
[27] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, vol. 13 of Classics in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1995, corrected reprint of the 1988 original. · Zbl 0843.65054
[28] H. B. Keller, Numerical Methods for Two-Point Boundary Value Problems, Dover, New York, NY, USA, 1992, corrected reprint of the 1968 edition. · Zbl 0172.19503
[29] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 16, Springer, New York, NY, USA, 3rd edition, 1971. · Zbl 0215.13802
[30] A. M. Samoilenko, “A numerical-analytic method for investigation of periodic systems of ordinary differential equations. I,” Ukrainskiĭ Matematicheskiĭ Zhurnal, vol. 17, no. 4, pp. 82-93, 1965.
[31] A. M. Samoilenko, “A numerical-analytic method for investigation of periodic systems of ordinary differential equations. II,” Ukrainskiĭ Matematicheskiĭ Zhurnal, vol. 18, no. 2, pp. 50-59, 1966.
[32] A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods of Investigating Periodic Solutions, Mir, Moscow, Russia, 1979, translated from the Russian by V. Shokurov, with a foreword by Yu. A. Mitropolskii.
[33] A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods of Investigation of Boundary-Value Problems, Naukova Dumka, Kiev, Ukraine, 1986, with an English summary, edited and with a preface by Yu. A. Mitropolskii. · Zbl 0761.34015
[34] A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations, Naukova Dumka, Kiev, Ukraine, 1992, edited and with a preface by Yu. A. Mitropolskii. · Zbl 0930.65084
[35] A. Rontó and M. Rontó, “Successive approximation techniques in non-linear boundary value problems for ordinary differential equations,” in Handbook of Differential Equations: Ordinary Differential Equations. Vol. IV, Handbook of Differential Equations, pp. 441-592, Elsevier, Amsterdam, The Netherlands, 2008. · Zbl 1180.34013 · doi:10.1016/S1874-5725(08)80010-7
[36] A. Augustynowicz and M. Kwapisz, “On a numerical-analytic method of solving of boundary value problem for functional-differential equation of neutral type,” Mathematische Nachrichten, vol. 145, pp. 255-269, 1990. · Zbl 0762.65046 · doi:10.1002/mana.19901450120
[37] N. A. Evkhuta and P. P. Zabreiko, “A. M. Samoilenko’s method for finding periodic solutions of quasilinear differential equations in a Banach space,” Ukrainian Mathematical Journal, vol. 37, no. 2, p. 162-168, 269, 1985. · Zbl 0565.34036 · doi:10.1007/BF01059707
[38] T. Jankowski, “Numerical-analytic method for implicit differential equations,” Miskolc Mathematical Notes, vol. 2, no. 2, pp. 137-144, 2001. · Zbl 1017.34024
[39] T. Jankowski, “The application of numerical-analytic method for systems of differential equations with a parameter,” Ukrainian Mathematical Journal, vol. 54, no. 4, pp. 545-554, 2002. · Zbl 1014.34016 · doi:10.1023/A:1021043629726
[40] T. Jankowski, “Numerical-analytic methods for differential-algebraic systems,” Acta Mathematica Hungarica, vol. 95, no. 3, pp. 243-252, 2002. · Zbl 0997.34001 · doi:10.1023/A:1015688922724
[41] T. Jankowski, “Monotone and numerical-analytic methods for differential equations,” Computers & Mathematics with Applications, vol. 45, no. 12, pp. 1823-1828, 2003. · Zbl 1054.45003 · doi:10.1016/S0898-1221(03)90003-4
[42] M. Kwapisz, “On modifications of the integral equation of Samoĭlenko’s numerical-analytic method of solving boundary value problems,” Mathematische Nachrichten, vol. 157, pp. 125-135, 1992. · Zbl 0804.65082
[43] M. Kwapisz, “Some remarks on an integral equation arising in applications of numerical-analytic method of solving of boundary value problems,” Ukrainian Mathematical Journal, vol. 44, no. 1, pp. 115-119, 1992. · Zbl 0786.65066 · doi:10.1007/BF01062634
[44] A. Perov, L. Dikareva, S. Oleinikova, and M. Portnov, “On the convergence analysis of A. M. Samoilenko’s method,” Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya Fizika, Matematika, pp. 111-119, 2001. · Zbl 1013.34037
[45] A. Ronto and M. Rontó, “A note on the numerical-analytic method for nonlinear two-point boundary-value problems,” Nonlinear Oscillations, vol. 4, no. 1, pp. 112-128, 2001. · Zbl 1049.34021
[46] A. Rontó and M. Rontó, “On a Cauchy-Nicoletti type three-point boundary value problem for linear differential equations with argument deviations,” Miskolc Mathematical Notes, vol. 10, no. 2, pp. 173-205, 2009. · Zbl 1199.34321
[47] A. Rontó and M. Rontó, “Successive approximation method for some linear boundary value problems for differential equations with a special type of argument deviation,” Miskolc Mathematical Notes, vol. 10, no. 1, pp. 69-95, 2009. · Zbl 1199.34320
[48] A. N. Ronto, “On some boundary value problems for Lipschitz differential equations,” Nelīnīĭnī Kolivannya, pp. 74-94, 1998. · Zbl 0946.34016
[49] A. N. Ronto, M. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “On periodic solutions of autonomous difference equations,” Georgian Mathematical Journal, vol. 8, no. 1, pp. 135-164, 2001. · Zbl 0985.39010
[50] A. N. Ronto, M. Ronto, and N. M. Shchobak, “On the parametrization of three-point nonlinear boundary value problems,” Nonlinear Oscillations, vol. 7, no. 3, pp. 384-402, 2004. · Zbl 1102.34011 · doi:10.1007/s11072-005-0019-5
[51] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. I,” Ukrainian Mathematical Journal, vol. 50, no. 1, pp. 116-135, 1998. · Zbl 0933.34009 · doi:10.1007/BF02514693
[52] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. II,” Ukrainian Mathematical Journal, vol. 50, no. 2, pp. 255-277, 1998. · Zbl 0933.34034 · doi:10.1007/BF02513450
[53] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. III,” Ukrainian Mathematical Journal, vol. 50, no. 7, pp. 1091-1114, 1998. · Zbl 0934.34034 · doi:10.1007/BF02528829
[54] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. IV,” Ukrainian Mathematical Journal, vol. 50, no. 12, pp. 1888-1907, 1999. · Zbl 0940.34027 · doi:10.1007/BF02514205
[55] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. V,” Ukrainian Mathematical Journal, vol. 51, no. 5, pp. 735-747, 2000. · Zbl 0937.39003 · doi:10.1007/BF02515240
[56] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. VI,” Ukrainian Mathematical Journal, vol. 51, no. 7, pp. 1079-1094, 2000. · Zbl 0940.34010 · doi:10.1007/BF02592043
[57] N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new directions of development. VII,” Ukrainian Mathematical Journal, vol. 51, no. 9, pp. 1399-1418, 2000. · Zbl 0940.34026 · doi:10.1007/BF02514456
[58] M. Rontó and J. Mészáros, “Some remarks on the convergence of the numerical-analytical method of successive approximations,” Ukrainian Mathematical Journal, vol. 48, no. 1, pp. 101-107, 1996. · Zbl 0940.65075 · doi:10.1007/BF02390987
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.