zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On asymptotic formulae via summability. (English) Zbl 1227.40006
The authors provide some Korovkin-type result on asymptotic formulae for sequences of linear operators which are $A$-summable.
40J05Summability in abstract structures
41A36Approximation by positive operators
Full Text: DOI
[1] Aguilera, F.; Cárdenas-Morales, D.; Garrancho, P.; Hernández, J. M.: Quantitative results in conservative approximation via summability, Automat. comput. Appl. math. 17, No. 2, 201-208 (2008)
[2] Altomare, F.; Campiti, M.: Korovkin-type approximation theory and its applications, (1994) · Zbl 0924.41001
[3] Bell, H. T.: Order summability and almost convergence, Proc. am. Math. soc. 38, 548-552 (1973) · Zbl 0259.40003 · doi:10.2307/2038948
[4] Cárdenas-Morales, D.; Garrancho, P.; Muñoz-Delgado, F. J.: A result of asymptotic formulae for linear k-convex operators, Int. J. Differ. equ. Appl. 2, No. 3, 335-347 (2001) · Zbl 1040.41015
[5] Cárdenas-Morales, D.; Muñoz-Delgado, F. J.: A Korovkin-type result in ck, an application to the mn operators, Approx. theory appl. (N. S.) 17, No. 3, 1-13 (2001) · Zbl 0995.41011 · doi:10.1023/A:1015505023069
[6] Devore, R. A.: The approximation of continuous functions by positive linear operators, lectures notes in mathematics 293, (1972) · Zbl 0276.41011
[7] Duman, O.; Orhan, C.: Rates of A-statistical convergence of positive linear operators, Appl. math. Lett. 18, 1339-1344 (2005) · Zbl 1085.41012 · doi:10.1016/j.aml.2005.02.029
[8] Eisenberg, S.; Wood, B.: Approximation of analytic functions by Bernstein-type operators, J. approx. Theory 6, 242-248 (1972) · Zbl 0242.30039 · doi:10.1016/0021-9045(72)90055-X
[9] Fast, H.: Sur la convergence statistique, Colloq. math. 2, 241-244 (1951) · Zbl 0044.33605
[10] King, J. P.: The lototsky transform and Bernstein polynomials, Can. J. Math. 18, 89-91 (1966) · Zbl 0134.05101 · doi:10.4153/CJM-1966-011-1
[11] King, J. P.; Swetits, J. J.: Positive linear operators and summability, Aust. J. Math. 11, 281-291 (1970) · Zbl 0199.45101 · doi:10.1017/S1446788700006650
[12] Korovkin, P. P.: Linear operators and approximation theory, (1960) · Zbl 0094.10201
[13] Lorentz, G. G.: A contribution to the theory of divergent sequences, Acta. math. 80, 167-190 (1948) · Zbl 0031.29501 · doi:10.1007/BF02393648
[14] Mohapatra, R. N.: Quantitative results on almost convergence of a sequence of positive linear operators, J. approx. Theory 20, 239-250 (1977) · Zbl 0351.41010 · doi:10.1016/0021-9045(77)90058-2
[15] Muñoz-Delgado, F. J.; Cárdenas-Morales, D.: Almost convexity and quantitative Korovkin type results, Appl. math. Lett. 11, No. 4, 105-108 (1998) · Zbl 0942.41013 · doi:10.1016/S0893-9659(98)00065-2
[16] Swetits, J. J.: On summability and positive linear operators, J. approx. Theory 25, 186-188 (1979) · Zbl 0422.41019 · doi:10.1016/0021-9045(79)90008-X