×

zbMATH — the first resource for mathematics

On divergence of sinc-approximations everywhere on \((0,\pi)\). (English. Russian original) Zbl 1227.42003
St. Petersbg. Math. J. 22, No. 4, 683-701 (2011); translation from Algebra Anal. 22, No. 4, 232-256 (2010).
Author’s abstract: Some properties of sinc-approximations of continuous functions on a segment are studied.

MSC:
42A10 Trigonometric approximation
41A30 Approximation by other special function classes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. S. Zhuk and V. V. Zhuk, Some orthogonalities in approximation theory, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 314 (2004), no. Anal. Teor. Chisel i Teor. Funkts. 20, 83 – 123, 287 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 6, 1652 – 1675. · Zbl 1127.42005 · doi:10.1007/s10958-006-0078-x · doi.org
[2] Gerhard Schmeisser and Frank Stenger, Sinc approximation with a Gaussian multiplier, Sampl. Theory Signal Image Process. 6 (2007), no. 2, 199 – 221. · Zbl 1156.94326
[3] Aleksandar Ignjatović, Local approximations based on orthogonal differential operators, J. Fourier Anal. Appl. 13 (2007), no. 3, 309 – 330. · Zbl 1119.41028 · doi:10.1007/s00041-006-6085-y · doi.org
[4] Anne Gelb, Reconstruction of piecewise smooth functions from non-uniform grid point data, J. Sci. Comput. 30 (2007), no. 3, 409 – 440. · Zbl 1113.65014 · doi:10.1007/s10915-006-9099-3 · doi.org
[5] M. H. Annaby and M. M. Tharwat, Sinc-based computations of eigenvalues of Dirac systems, BIT 47 (2007), no. 4, 699 – 713. · Zbl 1131.65066 · doi:10.1007/s10543-007-0154-8 · doi.org
[6] Frank Stenger, Numerical methods based on sinc and analytic functions, Springer Series in Computational Mathematics, vol. 20, Springer-Verlag, New York, 1993. · Zbl 0803.65141
[7] J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 45 – 89. · Zbl 0562.42002
[8] I. Ya. Novikov and S. B. Stechkin, Fundamentals of wavelet theory, Uspekhi Mat. Nauk 53 (1998), no. 6(324), 53 – 128 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 6, 1159 – 1231. · Zbl 0955.42019 · doi:10.1070/rm1998v053n06ABEH000089 · doi.org
[9] I. Ya. Novikov and S. B. Stechkin, Basic constructions of wavelets, Fundam. Prikl. Mat. 3 (1997), no. 4, 999 – 1028 (Russian, with English and Russian summaries). · Zbl 0936.42015
[10] Ортогонол\(^{\приме}\)ные ряды, 2нд ед., Издател\(^{\приме}\)ство Научно-Исследовател\(^{\приме}\)ского Актуарно-Финансового Центра (АФЦ), Мосцощ, 1999 (Руссиан, щитх Руссиан суммары). Б. С. Кашин анд А. А. Саакян, Ортхогонал сериес, Транслатионс оф Матхематицал Монограпхс, вол. 75, Америцан Матхематицал Социеты, Провиденце, РИ, 1989. Транслатед фром тхе Руссиан бы Ралпх П. Боас; Транслатион едитед бы Бен Силвер.
[11] Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. · Zbl 0776.42018
[12] P. L. Butzer and G. Hinsen, Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples, Signal Process. 17 (1989), no. 1, 1 – 17 (English, with French and German summaries). · doi:10.1016/0165-1684(89)90068-6 · doi.org
[13] J. R. Higgins, Sampling theorems and the contour integral method, Appl. Anal. 41 (1991), no. 1-4, 155 – 169. · Zbl 0661.94015 · doi:10.1080/00036819108840021 · doi.org
[14] G. Hinsen, Irregular sampling of bandlimited \?^\?-functions, J. Approx. Theory 72 (1993), no. 3, 346 – 364. · Zbl 0782.41004 · doi:10.1006/jath.1993.1027 · doi.org
[15] H. P. Kramer, A generalized sampling theorem, J. Math. and Phys. 38 (1959/60), 68 – 72. · Zbl 0196.31702 · doi:10.1002/sapm195938168 · doi.org
[16] Ahmed I. Zayed, Guido Hinsen, and Paul L. Butzer, On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm-Liouville problems, SIAM J. Appl. Math. 50 (1990), no. 3, 893 – 909. · Zbl 0695.41002 · doi:10.1137/0150053 · doi.org
[17] Kelly M. McArthur, Kenneth L. Bowers, and John Lund, The sinc method in multiple space dimensions: model problems, Numer. Math. 56 (1990), no. 8, 789 – 816. · Zbl 0697.65079 · doi:10.1007/BF01405289 · doi.org
[18] Mitsuhiko Ebata, Masaaki Eguchi, Shin Koizumi, and Keisaku Kumahara, On sampling formulas on symmetric spaces, J. Fourier Anal. Appl. 12 (2006), no. 1, 1 – 15. · Zbl 1092.43004 · doi:10.1007/s00041-005-4014-0 · doi.org
[19] A. Boumenir, Computing eigenvalues of Lommel-type equations by the sampling method, J. Comput. Anal. Appl. 2 (2000), no. 4, 323 – 332. · Zbl 1047.65058 · doi:10.1023/A:1010112721875 · doi.org
[20] Adel Mohsen and Mohamed El-Gamel, A sinc-collocation method for the linear Fredholm integro-differential equations, Z. Angew. Math. Phys. 58 (2007), no. 3, 380 – 390. · Zbl 1116.65131 · doi:10.1007/s00033-006-5124-5 · doi.org
[21] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions, Computing 76 (2006), no. 3-4, 177 – 202. · Zbl 1087.65049 · doi:10.1007/s00607-005-0144-0 · doi.org
[22] Mohamed El-Gamel and John R. Cannon, On the solution of a second order singularly-perturbed boundary value problem by the sinc-Galerkin method, Z. Angew. Math. Phys. 56 (2005), no. 1, 45 – 58. · Zbl 1058.65082 · doi:10.1007/s00033-004-3002-6 · doi.org
[23] Gilbert G. Walter and Xiaoping Shen, Wavelets based on prolate spheroidal wave functions, J. Fourier Anal. Appl. 10 (2004), no. 1, 1 – 26. · Zbl 1051.42029 · doi:10.1007/s00041-004-8001-7 · doi.org
[24] Qiyu Sun, Frames in spaces with finite rate of innovation, Adv. Comput. Math. 28 (2008), no. 4, 301 – 329. · Zbl 1218.42015 · doi:10.1007/s10444-006-9021-4 · doi.org
[25] Hu-an Li and Gen-sun Fang, Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions, Front. Math. China 1 (2006), no. 2, 252 – 271. · Zbl 1222.42004 · doi:10.1007/s11464-006-0006-x · doi.org
[26] P. L. Butzer and R. L. Stens, A modification of the Whittaker-Kotelnikov-Shannon sampling series, Aequationes Math. 28 (1985), no. 3, 305 – 311. · Zbl 0582.41004 · doi:10.1007/BF02189424 · doi.org
[27] P. L. Butzer, J. R. Higgins, and R. L. Stens, Classical and approximate sampling theorems: studies in the \?^\?(\Bbb R) and the uniform norm, J. Approx. Theory 137 (2005), no. 2, 250 – 263. · Zbl 1089.94013 · doi:10.1016/j.jat.2005.07.011 · doi.org
[28] A. Yu. Trynin, On approximation of analytic functions by Lagrange-Sturm-Liouville operators, Modern Problems of Function Theory and their Applications (10th Saratov Winter School, 2000): Thesis, Saratov. Univ., Saratov, 2000, pp. 140-141. (Russian)
[29] -, On an estimate of approximation of analytic functions by interpolation operator by sinc, Mathematics. Mechanics, Saratov. Univ., Saratov, 2005, pp. 124-127. (Russian)
[30] Jean-Paul Berrut, A formula for the error of finite sinc-interpolation over a finite interval, Numer. Algorithms 45 (2007), no. 1-4, 369 – 374. · Zbl 1123.41001 · doi:10.1007/s11075-007-9074-6 · doi.org
[31] A. Yu. Trynin, Estimates for Lebesgue functions and the Nevai formula for the sinc approximation of continuous functions on an interval, Sibirsk. Mat. Zh. 48 (2007), no. 5, 1155 – 1166 (Russian, with Russian summary); English transl., Siberian Math. J. 48 (2007), no. 5, 929 – 938. · Zbl 1164.41307 · doi:10.1007/s11202-007-0096-z · doi.org
[32] A. Yu. Trynin, Criteria for pointwise and uniform convergence of sinc approximations of continuous functions on an interval, Mat. Sb. 198 (2007), no. 10, 141 – 158 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 9-10, 1517 – 1534. · Zbl 1138.41001 · doi:10.1070/SM2007v198n10ABEH003894 · doi.org
[33] V. P. Sklyarov, On the best uniform sinc-approximation on a finite interval, East J. Approx. 14 (2008), no. 2, 183 – 192. · Zbl 1219.41022
[34] A. Yu. Trynin, A criterion for the uniform convergence of sinc-approximations on an interval, Izv. Vyssh. Uchebn. Zaved. Mat. 6 (2008), 66 – 78 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 52 (2008), no. 6, 58 – 69. · Zbl 1210.42003 · doi:10.3103/S1066369X08060078 · doi.org
[35] A. Yu. Trynin and V. P. Sklyarov, Error of sinc approximation of analytic functions on an interval, Sampl. Theory Signal Image Process. 7 (2008), no. 3, 263 – 270. · Zbl 1182.65020
[36] Géza Grünwald, Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome stetiger Funktionen, Ann. of Math. (2) 37 (1936), no. 4, 908 – 918 (German). · Zbl 0015.25202 · doi:10.2307/1968627 · doi.org
[37] J. Marcinkiewicz, Sur la divergence des polynômes d’interpolation, Acta Litterarum as Scientiarum 8 (1937), 131-135. · Zbl 0016.10603
[38] A. A. Privalov, The divergence of Lagrange interpolation processes with respect ot Jacobi nodes on a set of positive measure, Sibirsk. Mat. Ž. 17 (1976), no. 4, 837 – 859 (Russian). · Zbl 0362.41001
[39] Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135 – 157. · Zbl 0144.06402 · doi:10.1007/BF02392815 · doi.org
[40] Тригонометрические ряды, Щитх тхе едиториал цоллаборатион оф П. Л. Ул\(^{\приме}\)јанов, Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1961 (Руссиан). Н. К. Бары, А треатисе он тригонометриц сериес. Волс. И, ИИ, Аутхоризед транслатион бы Маргарет Ф. Муллинс. А Пергамон Пресс Боок, Тхе Мацмиллан Цо., Нещ Ыорк, 1964.
[41] Курс математического анализа. Том И, 3рд ед., ”Наука”, Мосцощ, 1983 (Руссиан). С. М. Никол\(^{\приме}\)ский, Курс математического анализа. Том ИИ, 3рд ед., ”Наука”, Мосцощ, 1983. С. М. Николскы, А цоурсе оф матхематицал аналысис. Вол. 1, Мир Публишерс, Мосцощ, 1977. Транслатед фром тхе сецонд Руссиан едитион бы В. М. Волосов. С. М. Николскы, А цоурсе оф матхематицал аналысис. Вол. 2, Мир Публишерс, Мосцощ, 1977. Транслатед фром тхе Руссиан бы В. М. Волосов.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.