Kouchi, Mehdi Rashidi; Nazari, Akbar Continuous \(g\)-frame in Hilbert \(C^{\ast}\)-modules. (English) Zbl 1227.46039 Abstr. Appl. Anal. 2011, Article ID 361595, 20 p. (2011). Summary: We give a generalization of \(g\)-frames in Hilbert \(C^{\ast}\)-modules that was introduced by A. Khosravi and B. Khosravi [Int. J. Wavelets Multiresolut. Inf. Process. 6, No. 3, 433–446 (2008; Zbl 1153.46035)]. Then X.-C. Xiao and X.-M. Zeng [J. Math. Anal. Appl. 363, No. 2, 399–408 (2010; Zbl 1189.46050)] investigated some of its properties. This generalization is a natural generalization of continuous and discrete \(g\)-frames and frames in Hilbert space, too. We characterize continuous \(g\)-Riesz \(g\)-frames in Hilbert \(C^{\ast}\)-modules. Cited in 1 ReviewCited in 3 Documents MSC: 46L08 \(C^*\)-modules 42C15 General harmonic expansions, frames Citations:Zbl 1153.46035; Zbl 1189.46050 PDF BibTeX XML Cite \textit{M. R. Kouchi} and \textit{A. Nazari}, Abstr. Appl. Anal. 2011, Article ID 361595, 20 p. (2011; Zbl 1227.46039) Full Text: DOI EuDML OpenURL References: [1] R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier series,” Transactions of the American Mathematical Society, vol. 72, pp. 341-366, 1952. · Zbl 0049.32401 [2] I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” Journal of Mathematical Physics, vol. 27, no. 5, pp. 1271-1283, 1986. · Zbl 0608.46014 [3] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete expansions in Rn analysis, synthesis, and algorithms,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp. 16-31, 1998. · Zbl 0905.94007 [4] I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1992. · Zbl 0776.42018 [5] J. J. Benedetto and D. Colella, “Wavelet analysis of spectrogram seizure chirps,” in Wavelet Applications in Signal and Image Processing III, vol. 2569 of Proceedings of SPIE, pp. 512-521, San Diego, Calif, USA, 1995. [6] J. J. Benedetto and G. E. Pfander, “Wavelet periodicity detection algorithms,” in Wavelet Applications in Signal and Image Processing VI, vol. 3458 of Proceedings of SPIE, pp. 48-55, San Diego, Calif, USA, 1998. [7] P. G. Casazza, “The art of frame theory,” Taiwanese Journal of Mathematics, vol. 4, no. 2, pp. 129-201, 2000. · Zbl 0966.42022 [8] P. J. S. G. Ferreira, “Mathematics for multimedia signal processing, II: Discrete finite frames and signal reconstruction,” in Signal Processing for Multimedia, J. S. Byrnes, Ed., pp. 35-54, IOS Press, 1999. · Zbl 1007.94523 [9] L. R. Neira and A. G. Constantinides, “Power spectrum estimation from values of noisy autocorrelations,” Signal Processing, vol. 50, no. 3, pp. 223-231, 1996. · Zbl 0875.93500 [10] J. J. Benedetto and W. Heller, “Irregular sampling and the theory of frames. I,” Note di Matematica, vol. 10, supplement 1, pp. 103-125, 1990. · Zbl 0777.42008 [11] H. G. Feichtinger and K. Gröchenig, “Theory and practice of irregular sampling,” in Wavelets: Mathematics and Applications, Stud. Adv. Math., pp. 305-363, CRC, Boca Raton, Fla, USA, 1994. · Zbl 1090.94524 [12] O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, Mass, USA, 2003. · Zbl 1017.42022 [13] N. F. Dudley Ward and J. R. Partington, “A construction of rational wavelets and frames in Hardy-Sobolev spaces with applications to system modeling,” SIAM Journal on Control and Optimization, vol. 36, no. 2, pp. 654-679, 1998. · Zbl 0940.42019 [14] E. J. Candès, “Harmonic analysis of neural networks,” Applied and Computational Harmonic Analysis, vol. 6, no. 2, pp. 197-218, 1999. · Zbl 0931.68104 [15] Y. C. Eldar and G. D. Forney Jr., “Optimal tight frames and quantum measurement,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 599-610, 2002. · Zbl 1071.94510 [16] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, “Tight frame: an efficient way for high-resolution image reconstruction,” Applied and Computational Harmonic Analysis, vol. 17, no. 1, pp. 91-115, 2004. · Zbl 1046.42026 [17] P. G. Casazza and J. Kova, “Equal-norm tight frames with erasures,” Advances in Computational Mathematics, vol. 18, no. 2-4, pp. 387-430, 2003. · Zbl 1035.42029 [18] V. K. Goyal, J. Kova, and J. A. Kelner, “Quantized frame expansions with erasures,” Applied and Computational Harmonic Analysis, vol. 10, no. 3, pp. 203-233, 2001. · Zbl 0992.94009 [19] A. C. Lozano, J. Kovacevic, and M. Andrews, “Quantized frame expansions in a wireless environment,” in Proceedings of the Data Compression Conference (DCC ’02), pp. 480-489, Snowbird, Utah, USA, March 2002. [20] R. B. Holmes and V. I. Paulsen, “Optimal frames for erasures,” Linear Algebra and Its Applications, vol. 377, pp. 31-51, 2004. · Zbl 1042.46009 [21] T. Strohmer and R. W. Heath Jr., “Grassmannian frames with applications to coding and communication,” Applied and Computational Harmonic Analysis, vol. 14, no. 3, pp. 257-275, 2003. · Zbl 1028.42020 [22] P. G. Casazza and J. Kovacević, “Uniform tight frames for signal processing and communication,” in Wavelets: Applications in Signal and Image Processing IX, vol. 4478 of Proceedings of SPIE, pp. 129-134, Diego, Calif, USA, July 2001. [23] G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser, Boston, Mass, USA, 1994. · Zbl 0839.42011 [24] W. Sun, “G-frames and g-Riesz bases,” Journal of Mathematical Analysis and Applications, vol. 322, no. 1, pp. 437-452, 2006. · Zbl 1129.42017 [25] M. Frank and D. R. Larson, “Frames in Hilbert C\ast -modules and C\ast -algebras,” Journal of Operator Theory, vol. 48, no. 2, pp. 273-314, 2002. · Zbl 1029.46087 [26] A. Khosravi and B. Khosravi, “Frames and bases in tensor products of Hilbert spaces and Hilbert C\ast -modules,” Proceedings of the Indian Academy of Sciences Mathematical Sciences, vol. 117, no. 1, pp. 1-12, 2007. · Zbl 1125.46048 [27] A. Khosravi and B. Khosravi, “Fusion frames and g-frames in Hilbert C\ast -modules,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 6, no. 3, pp. 433-446, 2008. · Zbl 1153.46035 [28] E. C. Lance, Hilbert C\ast -Modules: A Toolkit for Operator Algebraist, vol. 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1995. · Zbl 0822.46080 [29] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C\ast -Algebras, vol. 60 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 1998. · Zbl 0922.46050 [30] X.-C. Xiao and X.-M. Zeng, “Some properties of g-frames in Hilbert C\ast -modules,” Journal of Mathematical Analysis and Applications, vol. 363, no. 2, pp. 399-408, 2010. · Zbl 1189.46050 [31] S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, “Continuous frames in Hilbert space,” Annals of Physics, vol. 222, no. 1, pp. 1-37, 1993. · Zbl 0782.47019 [32] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, vol. 7 of Pure and Applied Mathematics, Interscience, New York, NY, USA, 1958. [33] K. Yosida, Functional Analysis, vol. 123 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 6th edition, 1980. · Zbl 0435.46002 [34] L. Aramba, “On frames for countably generated Hilbert C\ast -modules,” Proceedings of the American Mathematical Society, vol. 135, no. 2, pp. 469-478, 2007. · Zbl 1116.46050 [35] P. G\uavru\cta, “On the duality of fusion frames,” Journal of Mathematical Analysis and Applications, vol. 333, no. 2, pp. 871-879, 2007. · Zbl 1127.46016 [36] P. G\uavru\cta, “On some identities and inequalities for frames in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 321, no. 1, pp. 469-478, 2006. · Zbl 1119.42011 [37] R. Balan, P. Casazza, and D. Edidin, “On signal reconstruction without phase,” Applied and Computational Harmonic Analysis, vol. 20, no. 3, pp. 345-356, 2006. · Zbl 1090.94006 [38] R. Balan, P. G. Casazza, D. Edidin, and G. Kutyniok, “A new identity for Parseval frames,” Proceedings of the American Mathematical Society, vol. 135, no. 4, pp. 1007-1015, 2007. · Zbl 1136.42308 [39] X. Zhu and G. Wu, “A note on some equalities for frames in Hilbert spaces,” Applied Mathematics Letters, vol. 23, no. 7, pp. 788-790, 2010. · Zbl 1191.42019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.