×

Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. (English) Zbl 1227.49046

Summary: The optimal design of structures and systems described by Partial Differential Equations (PDEs) often gives rise to large-scale optimization problems, in particular if the underlying system of PDEs represents a multi-scale, multi-physics problem. Therefore, reduced-order modelling techniques such as Balanced Truncation Model Reduction (BTMR), proper orthogonal decomposition, or reduced basis methods are used to significantly decrease the computational complexity while maintaining the desired accuracy of the approximation. In this paper, we are interested in such shape optimization problems where the design issue is restricted to a relatively small portion of the computational domain. In this case, it appears to be natural to rely on a full-order model only in that specific part of the domain and to use a reduced-order model elsewhere. A convenient methodology to realize this idea consists of a suitable combination of domain decomposition techniques and BTMR. We will consider such an approach for shape optimization problems associated with the time-dependent Stokes system and derive explicit error bounds for the modelling error. As an application in life sciences, we will be concerned with the optimal design of capillary barriers as part of a network of microchannels and reservoirs on microfluidic biochips that are used in clinical diagnostics, pharmacology, and forensics for high-throughput screening and hybridization in genomics and protein profiling in proteomics.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows

Software:

INTLAB; KELLEY

References:

[1] DOI: 10.1007/BF00271794 · Zbl 0708.76106 · doi:10.1007/BF00271794
[2] DOI: 10.1016/S0045-7825(98)00356-9 · Zbl 0934.76040 · doi:10.1016/S0045-7825(98)00356-9
[3] Antil H., Optimization and model reduction of time dependent PDE-constrained optimization problems: Applications to surface acoustic wave driven microfluidic biochips (2009)
[4] DOI: 10.1007/978-3-540-75199-1_36 · doi:10.1007/978-3-540-75199-1_36
[5] Antil H., J. Comput. Math. 28 pp 149– (2010)
[6] Antil H., Control Cybern. 37 pp 771– (2008)
[7] DOI: 10.1137/1.9780898718713 · doi:10.1137/1.9780898718713
[8] DOI: 10.1007/3-540-27909-1 · Zbl 1066.65004 · doi:10.1007/3-540-27909-1
[9] DOI: 10.1017/CBO9780511618635 · Zbl 1118.65117 · doi:10.1017/CBO9780511618635
[10] DOI: 10.1016/0168-9274(90)90019-C · Zbl 0691.76031 · doi:10.1016/0168-9274(90)90019-C
[11] DOI: 10.1007/978-1-4612-3172-1 · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[12] DOI: 10.1137/S1064827501380630 · Zbl 1034.65066 · doi:10.1137/S1064827501380630
[13] Crouzeix M., Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge. 7 pp 33– (1973)
[14] Dullerud G. E., A Course in Robust Control Theory 36 (2000) · Zbl 0939.93001 · doi:10.1007/978-1-4757-3290-0
[15] DOI: 10.1007/s00791-006-0040-y · doi:10.1007/s00791-006-0040-y
[16] DOI: 10.1007/978-3-642-61623-5 · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[17] DOI: 10.1080/00207178408933239 · Zbl 0543.93036 · doi:10.1080/00207178408933239
[18] DOI: 10.1137/1.9780898717761 · Zbl 1159.65026 · doi:10.1137/1.9780898717761
[19] Gunzburger M. D., Perspectives in Flow Control and Optimization (2003) · Zbl 1088.93001 · doi:10.1115/1.1623758
[20] DOI: 10.1137/070681910 · Zbl 1216.76015 · doi:10.1137/070681910
[21] Kelley C. T., Iterative Methods for Optimization (1999) · Zbl 0934.90082 · doi:10.1137/1.9781611970920
[22] Khoromskij B. N., Numerical Solution of Elliptic Differential Equations by Reduction to the Interface 36 (2004) · Zbl 1043.65128 · doi:10.1007/978-3-642-18777-3
[23] DOI: 10.1007/3-540-27909-1_3 · doi:10.1007/3-540-27909-1_3
[24] Mohammadi B., Applied Shape Optimization for Fluids (2001) · Zbl 0970.76003
[25] DOI: 10.1109/TAC.1981.1102568 · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[26] DOI: 10.1002/cpa.10020 · Zbl 1024.76025 · doi:10.1002/cpa.10020
[27] Rønquist, E. M. A domain decomposition solver for the steady Navier–Stokes equations. Proceedings of the Third International Conference on Spectral and High-Order Methods. June1995, Houston, Texas. Edited by: Ilin, A. and Scott, R. Houston Journal of Mathematics.
[28] Rønquist, E. M. Domain decomposition methods for the steady Stokes equations. Eleventh International Conference on Domain Decomposition Methods. 1998, London. Edited by: Lai, C.H., Bjorstad, P. E., Cross, M. and Widlund, O. B. pp.330–340. Available at DDM.org.
[29] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[30] Rump S. M., Developments in Reliable Computing pp 77– (1999) · doi:10.1007/978-94-017-1247-7_7
[31] DOI: 10.1137/1.9780898718003 · doi:10.1137/1.9780898718003
[32] DOI: 10.1017/S0017089502020013 · Zbl 1011.49001 · doi:10.1017/S0017089502020013
[33] DOI: 10.1016/j.laa.2004.01.015 · Zbl 1102.65075 · doi:10.1016/j.laa.2004.01.015
[34] Sun K., Domain decomposition and model reduction for large-scale dynamical systems (2008)
[35] DOI: 10.1007/978-3-540-69777-0_46 · Zbl 1157.65445 · doi:10.1007/978-3-540-69777-0_46
[36] DOI: 10.1016/S0045-7825(96)01207-8 · Zbl 0891.76053 · doi:10.1016/S0045-7825(96)01207-8
[37] Toselli A., Domain Decomposition Methods – Algorithms and Theory 34 (2004) · Zbl 1061.65138
[38] Zhou K., Robust and Optimal Control (1996) · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.