Pardon, John On the distortion of knots on embedded surfaces. (English) Zbl 1227.57013 Ann. Math. (2) 174, No. 1, 637-646 (2011). Summary: Our main result is a nontrivial lower bound for the distortion of some specific knots. In particular, we show that the distortion of the torus knot \(T_{p,q}\) satisfies \(\delta(T_{p,q}) \geq \frac 1{160}\min(p,q)\). This answers a 1983 question of Gromov. Cited in 2 ReviewsCited in 6 Documents MSC: 57M25 Knots and links in the \(3\)-sphere (MSC2010) 53A04 Curves in Euclidean and related spaces Keywords:knot distortion PDF BibTeX XML Cite \textit{J. Pardon}, Ann. Math. (2) 174, No. 1, 637--646 (2011; Zbl 1227.57013) Full Text: DOI arXiv OpenURL References: [1] R. H. Bing, ”An alternative proof that \(3\)-manifolds can be triangulated,” Ann. of Math., vol. 69, pp. 37-65, 1959. · Zbl 0106.16604 [2] E. Denne and J. M. Sullivan, ”The distortion of a knotted curve,” Proc. Amer. Math. Soc., vol. 137, iss. 3, pp. 1139-1148, 2009. · Zbl 1179.53003 [3] R. H. Fox, ”A remarkable simple closed curve,” Ann. of Math., vol. 50, pp. 264-265, 1949. · Zbl 0033.13603 [4] M. H. Freedman, Z. He, and Z. Wang, ”Möbius energy of knots and unknots,” Ann. of Math., vol. 139, iss. 1, pp. 1-50, 1994. · Zbl 0817.57011 [5] M. Gromov, ”Homotopical effects of dilatation,” J. Differential Geom., vol. 13, iss. 3, pp. 303-310, 1978. · Zbl 0427.58010 [6] M. Gromov, ”Filling Riemannian manifolds,” J. Differential Geom., vol. 18, iss. 1, pp. 1-147, 1983. · Zbl 0515.53037 [7] A. J. S. Hamilton, ”The triangulation of \(3\)-manifolds,” Quart. J. Math. Oxford Ser., vol. 27, iss. 105, pp. 63-70, 1976. · Zbl 0318.57003 [8] R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, with notes by J. Milnor and M. Atiyah, Princeton, N.J.: Princeton Univ. Press, 1977, vol. 88. · Zbl 0361.57004 [9] E. E. Moise, ”Affine structures in \(3\)-manifolds. V. The triangulation theorem and Hauptvermutung,” Ann. of Math., vol. 56, pp. 96-114, 1952. · Zbl 0048.17102 [10] C. A. S. Mullikin, ”A class of curves in every knot type where chords of high distortion are common,” Topology Appl., vol. 154, iss. 14, pp. 2697-2708, 2007. · Zbl 1139.57006 [11] J. Munkres, ”Obstructions to the smoothing of piecewise-differentiable homeomorphisms,” Ann. of Math., vol. 72, pp. 521-554, 1960. · Zbl 0108.18101 [12] J. O’Hara, ”Family of energy functionals of knots,” Topology Appl., vol. 48, iss. 2, pp. 147-161, 1992. · Zbl 0769.57006 [13] J. O’Hara, ”Energy functionals of knots. II,” Topology Appl., vol. 56, iss. 1, pp. 45-61, 1994. · Zbl 0996.57503 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.