Complete damage in elastic and viscoelastic media and its energetics. (English) Zbl 1227.74058

Summary: A model for the evolution of damage that allows for complete disintegration is addressed. Small strains and a linear response function are assumed. The ”flow rule” for the damage parameter is rate-independent. The stored energy involves the gradient of the damage variable, which determines an internal length-scale. Quasistatic fully rate-independent evolution is considered as well as rate-dependent evolution including viscous/inertial effects. Illustrative 2-dimensional computer simulations are presented, too.


74R20 Anelastic fracture and damage
74B05 Classical linear elasticity
74D05 Linear constitutive equations for materials with memory
Full Text: DOI


[1] Benvenuti, E.; Borino, G.; Tralli, A., A thermodynamically consistent nonlocal formulation for damaging materials, Euro. J. Mech. A: Solids, 21, 535-553 (2001) · Zbl 1038.74006
[2] Bittnar, Z.; Šejnoha, J., Numerical Methods in Structural Mechanics (1996), ASCE Press and Thomas Telford: ASCE Press and Thomas Telford New York and London
[3] Bonnetti, E.; Schimperna, G., Local existence for Frémond model of damage in elastic materials, Cont. Mech. Thermodyn., 16, 319-335 (2004) · Zbl 1066.74048
[4] Bouchitté, G.; Mielke, A.; Roubı´ček, T., A complete-damage problem at small strains, Zeit. Für Angew. Math. Phys., 60, 205-236 (2009) · Zbl 1238.74005
[5] Bourdin, B., Numerical implementation of the variational formulation of brittle fracture, Interface Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[6] Bourdin, B., The variational formulation of brittle fracture: numerical implementation and extensions, (Belytschko, T.; Combescure, A.; de Borst, R., IUTAM Symposium Discretization Methods for Evolving Discontinuities (2007), Springer), 381-393 · Zbl 1209.74036
[7] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057
[8] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (2007), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1118.65117
[9] Brancherie, D.; Ibrahimbegovic, A., Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part I: theoretical formulation and numerical implementation, Engrg. Comput., 26, 100-127 (2009) · Zbl 1257.74138
[10] Campoa, M.; Fernándeza, J. R.; Kuttler, K. L.; Shillor, M.; Viaño, J. M., Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Meth. Appl. Mech. Engrg., 196, 476-488 (2006) · Zbl 1120.74651
[11] Coleman, T. F.; Li, Y., A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables, SIAM J. Optim., 6, 1040-1058 (1996) · Zbl 0861.65053
[13] De Borst, R.; Benallal, A.; Heeres, O. M., A gradient-enhanced damage approach to fracture, J. de Physique IV, 6, C6, 491-509 (1996)
[14] DeSimone, A.; Marigo, J.-J.; Teresi, L., A damage mechanism approach to stress softening and its application to rubber, Eur. J. Mech. A: Solids, 20, 873-892 (2001) · Zbl 1008.74005
[15] De Souza Neto, E. A.; Peric, D.; Owen, D. R.J., A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects, J. Mech. Phys. Solids, 42, 1533-1550 (1994) · Zbl 0810.73048
[16] Fernández, J. R.; Sofonea, M., Variational and numerical analysis of the Signorini’s contact problem in viscoplasticity with damage, J. Appl. Math., 2, 87-114 (2003) · Zbl 1064.74134
[17] Francfort, G. A.; Garroni, A., A variational view of partial brittle damage evolution, Arch. Rat. Mech. Anal., 182, 125-152 (2006) · Zbl 1098.74006
[18] Frémond, M., Non-smooth thermomechanics (2002), Springer: Springer Berlin · Zbl 0990.80001
[19] Frémond, M.; Kuttler, K. L.; Nedjar, B.; Shillor, M., One-dimensional models of damage, Adv. Math. Sci. Appl., 8, 541-570 (1998) · Zbl 0915.73041
[20] Frémond, M.; Kuttler, K. L.; Shillor, M., Existence and uniqueness of solutions for a dynamic one-dimensional damage model, J. Math. Anal. Appl., 229, 271-294 (1999) · Zbl 0920.73328
[21] Frémond, M.; Nedjar, B., Damage in concrete: the unilateral phenomenon, Nucl. Engrg. Des., 156, 323-335 (1995)
[22] Frémond, M.; Nedjar, B., Damage, gradient of damage and principle of virtual power, Int. J. Solid Struct., 33, 1083-1103 (1996) · Zbl 0910.73051
[23] Fosdick, R.; Truskinovsky, L., About Clapeyron’s theorem in linear elasticity, J. Elast., 72, 145-172 (2003) · Zbl 1059.74007
[24] Govindjee, S.; Simo, J. C., A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect, J. Mech. Phys. Solids, 39, 87-112 (1991) · Zbl 0734.73066
[25] Han, W.; Shillor, M.; Sofonea, M., Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137, 377-398 (2001) · Zbl 0999.74087
[26] Haslinger, J.; Jedelský, D.; Kozubek, T.; Tvrdı´k, J., Genetic and random search methods in optimal shape design problems, J. Glob. Optim., 16, 109-131 (2000) · Zbl 0974.49023
[27] Ibrahimbegović, A.; Knopf-Lenoir, C.; Kučerová, A.; Villon, P., Optimal design and optimal control of structures undergoing finite rotations and elastic deformations, Int. J. Numer. Meth. Engrg., 61, 2428-2460 (2004) · Zbl 1075.74607
[28] Kočvara, M.; Mielke, A.; Roubı´ček, T., A rate-independent approach to the delamination problem, Math. Mech. Solids, 11, 423-447 (2006) · Zbl 1133.74038
[29] Lorentz, E.; Andrieux, S., A variational formulation for nonlocal damage models, Int. J. Plasticity, 15, 119-138 (1999) · Zbl 1024.74005
[30] Matouš, K.; Lepš, M.; Zeman, J.; Šejnoha, M., Applying genetic algorithms to selected topics commonly encountered in engineering practice, Comput. Meth. Appl. Mech. Engrg., 190, 1629-1650 (2000) · Zbl 0969.74050
[31] Maugin, G. A., The Thermodynamics of Plasticity and Fracture (1992), Cambridge University Press: Cambridge University Press Cambridge
[32] Miehe, C., Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur. J. Mech. A, 14, 697-720 (1995) · Zbl 0837.73054
[33] Miehe, C.; Keck, J., Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation, J. Mech. Phys. Solids, 48, 323-365 (2000) · Zbl 0998.74014
[34] Mielke, A., Evolution of rate-independent systems, (Dafermos, C.; Feireisl, E., Handbook of Differential Equations: Evolutionary Differential Equations (2005), Elsevier: Elsevier Amsterdam), 461-559 · Zbl 1120.47062
[36] Mielke, A.; Roubı´ček, T., Rate-independent damage processes in nonlinear elasticity, Math. Models Meth. Appl. Sci., 16, 177-209 (2006) · Zbl 1094.35068
[37] Mielke, A.; Roubı´ček, T., Numerical approaches to rate-independent processes and applications in inelasticity, Math. Modell. Numer. Anal., 43, 399-428 (2009) · Zbl 1166.74010
[38] Mielke, A.; Rossi, R., Existence and uniqueness results for a class of rate-independent hysteresis problems, Math. Models Meth. Appl. Sci., 17, 81-123 (2007) · Zbl 1121.34052
[40] Mielke, A.; Theil, F., On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11, 151-189 (2004) · Zbl 1061.35182
[41] Mielke, A.; Theil, F.; Levitas, V. I., A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rat. Mech. Anal., 162, 137-177 (2002) · Zbl 1012.74054
[42] Ortiz, M., An analytical study of the localized failure modes of concrete, Mech. Mater., 6, 159-174 (1987)
[43] Padovani, C.; Pasquinelli, G.; Šilhavý, M., Processes in masonry bodies and the dynamical significance of collapse, Math. Mech. Solids, 13, 573-610 (2008) · Zbl 1176.74027
[44] Peerlings, R. H.J.; Massart, T. J.; Geers, M. G.D., A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking, Comput. Meth. Appl. Mech. Engrg., 193, 3403-3417 (2004) · Zbl 1060.74508
[45] Simone, A.; Askes, H.; Sluys, L. J., Incorrect initiation and propagation of failure in non-local and gradient-enhanced media, Int. J. Solid Struct., 41, 351-363 (2004) · Zbl 1059.74542
[46] Roubı´ček, T., Nonlinear Partial Differential Equations with Applications (2005), Birkhäuser: Birkhäuser Basel · Zbl 1087.35002
[47] Roubı´ček, T., Rate independent processes in viscous solids at small strains, Math. Meth. Appl. Sci., 32, 825-862 (2009) · Zbl 1239.35158
[49] Sofonea, M.; Han, W.; Shillor, M., Analysis and Approximation of Contact Problems and Adhesion or Damage (2006), Chapman and Hall: Chapman and Hall New York · Zbl 1089.74004
[50] Stumpf, H.; Hackl, K., Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-bittle materials, Int. J. Solids Struct., 40, 1567-1584 (2003) · Zbl 1032.74511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.