zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On an integrable two-component Camassa-Holm shallow water system. (English) Zbl 1227.76016
Summary: The interest in the Camassa-Holm equation inspired the search for various generalizations of this equation with interesting properties and applications. In this Letter we deal with such a two-component integrable system of coupled equations. First we derive the system in the context of shallow water theory. Then we show that while small initial data develop into global solutions, for some initial data wave breaking occurs. We also discuss the solitary wave solutions. Finally, we present an explicit construction for the peakon solutions in the short wave limit of system.

76D33Waves in incompressible viscous fluids
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q30Stokes and Navier-Stokes equations
37J35Completely integrable systems, topological structure of phase space, integration methods
35C08Soliton solutions of PDE
Full Text: DOI
[1] Camassa, R.; Holm, D. D.: Phys. rev. Lett.. 71, 1661 (1993)
[2] Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: Physica D. 190, 1 (2004)
[3] Johnson, R. S.: J. fluid. Mech.. 457, 63 (2002)
[4] A. Constantin, D. Lannes, Arch. Ration. Mech. Anal., doi: 10.1007/s00205-008-0128-2
[5] Johnson, R. S.: Fluid dynam. Res.. 33, 97 (2003)
[6] Busuioc, V.: C. R. Acad. sci. Paris ser. I. 328, 1241 (1999)
[7] Dai, H. -H.: Wave motion. 28, 367 (1998) · Zbl 1074.74541
[8] Fokas, A.; Fuchssteiner, B.: Lett. nuovo cimento. 28, 299 (1980)
[9] Constantin, A.; Gerdjikov, V. S.; Ivanov, R. I.: Inverse problems. 22, 2197 (2006) · Zbl 1105.37044
[10] Beals, R.; Sattinger, D.; Szmigielski, J.: Inverse problems. 15, L1 (1999) · Zbl 1020.35092
[11] Constantin, A.; Strauss, W.: Commun. pure appl. Math.. 53, 603 (2000)
[12] Constantin, A.; Strauss, W.: J. nonlinear sci.. 12, 415 (2002)
[13] Parker, A.: Chaos solitons fractals. 35, 220 (2008)
[14] Lenells, J.: J. differential equations. 217, 393 (2005)
[15] Constantin, A.: Ann. inst. Fourier (Grenoble). 50, 321 (2000)
[16] Constantin, A.: Invent. math.. 166, 523 (2006)
[17] Constantin, A.; Escher, J.: Bull. am. Math. soc.. 44, 423 (2007)
[18] Toland, J. F.: Topol. methods nonlinear anal.. 7, 1 (1996)
[19] Whitham, G. B.: Linear and nonlinear waves. (1999) · Zbl 0940.76002
[20] Constantin, A.; Escher, J.: Acta math.. 181, 229 (1998)
[21] Mckean, H. P.: Asian J. Math.. 2, 867 (1998)
[22] Hunter, J.; Saxton, R.: SIAM J. Appl. math.. 51, 1498 (1991)
[23] Ivanov, R.: Z. naturforsch. A. 61, 133 (2006)
[24] Olver, P.; Rosenau, P.: Phys. rev. E. 53, 1900 (1996)
[25] Shabat, A.; Alonso, L. MartĂ­nez: On the prolongation of a hierarchy of hydrodynamic chains. New trends in integrability and partial solvability, Proceedings of the NATO advanced research workshop, cadiz, Spain 2002, NATO science series, 263-280 (2004)
[26] Chen, M.; Liu, S. -Q.; Zhang, Y.: Lett. math. Phys.. 75, 1 (2006)
[27] Escher, J.; Lechtenfeld, O.; Yin, Z.: Discrete contin. Dyn. syst.. 19, 493 (2007)
[28] Aratyn, H.; Gomes, J. F.; Zimerman, A. H.: Sigma. 2, 070 (2006)
[29] Green, A.; Naghdi, P.: J. fluid mech.. 78, 237 (1976) · Zbl 0333.76003
[30] Kaup, D. J.: Progr. theor. Phys.. 64, 396 (1976)
[31] El, G. A.; Grimshaw, R. H. J.; Pavlov, M. V.: Stud. appl. Math.. 106, 157 (2001)
[32] Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. Lecture notes in math. 448, 25-70 (1975)
[33] Hancock, H.: Lectures on the theory of elliptic functions. (1958) · Zbl 0084.07302
[34] Gurevich, A. V.; Zybin, K. P.: Sov. phys. Usp.. 38, 687 (1995)
[35] Pavlov, M.: J. phys. A: math. Gen.. 38, 3823 (2005)
[36] Beals, R.; Sattinger, D.; Szmigielski, J.: Appl. anal.. 78, 255 (2001)