zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays. (English) Zbl 1227.92002
Summary: We investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions.

92B20General theory of neural networks (mathematical biology)
60J20Applications of Markov chains and discrete-time Markov processes on general state spaces
15A45Miscellaneous inequalities involving matrices
60J75Jump processes
62M05Markov processes: estimation
65C20Models (numerical methods)
Full Text: DOI
[1] Arik, S.: IEEE trans. Circuits systems I. 47, 1089 (2000)
[2] Joy, M. P.: Neural networks. 13, 613 (2000)
[3] Wang, Z.; Ho, D.; Liu, X.: IEEE trans. Neural networks. 16, No. 1, 279 (2005)
[4] Cao, J.; Huang, D. -S.; Qu, Y.: Chaos solitons fractals. 23, No. 1, 221 (2005)
[5] Cao, J.; Ho, D.: Chaos solitons fractals. 24, No. 5, 1317 (2005)
[6] Huang, H.; Cao, J.: Appl. math. Comput.. 142, No. 1, 143 (2003)
[7] Singh, V.: Chaos solitons fractals. 29, No. 2, 470 (2006)
[8] Song, Q.; Zhao, Z.; Li, Y.: Phys. lett. A. 335, No. 2 -- 3, 213 (2005)
[9] Song, Q.; Zhao, Z.: Chaos solitons fractals. 25, No. 2, 393 (2005)
[10] Wang, Z.; Liu, Y.; Liu, X.: Phys. lett. A. 345, No. 4 -- 6, 299 (2005)
[11] Zhao, H.: Neural networks. 17, 47 (2004) · Zbl 1058.35113
[12] Zhao, H.: Phys. lett. A. 336, 331 (2005)
[13] Liu, Y.; Wang, Z.; Liu, X.: Neural networks. 19, No. 5, 667 (2006) · Zbl 1102.68569
[14] Salam, F. M.; Zhang, J.: Adaptive neural observer with forward co-state propagation. Proceedings of the international joint conference on neural networks (IJCNN ’01), vol. 1 1, 675-680 (2001)
[15] Habtom, R.; Litz, L.: Estimation of unmeasured inputs using recurrent neural networks and the extended Kalman filter. Proceedings of the international conference on neural networks, vol. 4 4, 2067-2071 (1997)
[16] Elanayar, V.; Shin, Y.: IEEE trans. Neural networks. 5, No. 4, 594 (1994)
[17] Huang, H.; Feng, G.; Cao, J.: IEEE trans. Neural networks. 19, No. 8, 1329 (2008)
[18] Tino, P.; Cernansky, M.; Benuskova, L.: IEEE trans. Neural networks. 15, No. 1, 6 (2004)
[19] Wang, Z.; Liu, Y.; Yu, L.; Liu, X.: Phys. lett. A. 356, No. 4 -- 5, 346 (2006)
[20] Liu, Y.; Wang, Z.; Liu, X.: Phys. lett. A. 372, No. 22, 3986 (2008)
[21] Liu, Y.; Wang, Z.; Liang, J.; Liu, X.: IEEE trans. Systems man cybern. Part B. 38, No. 5, 1314 (2008)
[22] Wang, Z.; Gao, H.; Cao, J.; Liu, X.: IEEE trans. Nanobiosci.. 7, No. 2, 154 (2008)
[23] Wang, Z.; Liu, Y.; Liu, X.: Automatica. 44, No. 5, 1268 (2008)
[24] Wang, Z.; Yang, F.; Ho, D. W. C.; Swift, S.; Tucker, A.; Liu, X.: IEEE trans. Nanobiosci.. 7, No. 1, 44 (2008)
[25] Gao, H.; Chen, T.: IEEE trans. Automat. control. 52, No. 2, 328 (2007)
[26] Gao, H.; Wang, C.: Asian J. Control. 7, No. 2, 81 (2005)
[27] Gao, H.; Wang, C.: IEEE trans. Signal process.. 52, No. 6, 1631 (2004)