zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. (English) Zbl 1227.93008
Summary: As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control problem of leader-follower multi-agent systems with/without communication delays is formulated and a distributed dynamic tracking control is designed by employing an event-triggered technique. Then, the input-to-state stability of the closed-loop multi-agent system with directed interconnections is analyzed. Finally, a numerical example is given to validate the proposed control.

MSC:
93A14Decentralized systems
93C10Nonlinear control systems
93C15Control systems governed by ODE
WorldCat.org
Full Text: Link EuDML
References:
[1] Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Trans. Control Systems Technol. 19 (2011), 929-938. · doi:10.1109/TCST.2010.2053542
[2] Dimarogonas, D. V., Frazzoli, E.: Distributed event-triggered strategies for multi-agent systems. Proc. 47th Annual Allerton Conference on Communications, Control and Computing, Monticello 2009, pp. 906-910.
[3] Dimarogonas, D. V., Johansson, K. H.: Event-triggered control for multi-agent systems. Proc. IEEE CDC/CCC2009, Shanghai 2009, pp. 7131-7136.
[4] Eqtami, A., Dimarogonas, D. V., Kyriakopoulos, K. J.: Event-triggered control for discrete-time systems. Proc. American Control Conference, Baltimore 2010, pp. 4719-4724.
[5] Gao, Y., Wang, L.: Asynchronous consensus of continuous-time multi-agent systems with intermittent measurements. Internat. J. Control 83 (2010), 552-562. · Zbl 1222.93009 · doi:10.1080/00207170903297192
[6] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. · Zbl 0968.05002
[7] Hale, J. K., Lunel, S. M. V.: Introduction to the Theory of Functional Differential Equations. Applied Mathematical Sciences, Springer, New York 1991.
[8] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013 · arxiv:0705.0403
[9] Hu, J.: On robust consensus of multi-agent systems with communication time-delays. Kybernetika 45 (2009), 768-784. · Zbl 1190.93003 · http://www.kybernetika.cz/content/2009/5/768 · eudml:37700
[10] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. · Zbl 1204.93011 · doi:10.1016/j.automatica.2010.05.020 · arxiv:1108.1855
[11] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 374 (2007), 853-863. · doi:10.1016/j.physa.2006.08.015
[12] Kingston, D. B., Ren, W., Beard, R.: Consensus algorithms are inputto-state stable. Proc. American Control Conference 2005, pp. 1686-1690.
[13] Li, T., Zhang, J.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica 45 (2009), 1929-1936. · Zbl 1185.93006 · doi:10.1016/j.automatica.2009.04.017
[14] Liu, Z., Chen, Z.: Event-triggered average-consensus for multi-agent systems. Proc. 29th Chinese Control Conference, Beijing 2010, pp. 4506-4511.
[15] Liu, Y., Jia, Y.: Consensus problem of high-order multi-agent systems with external disturbances: an H-infinity analysis approach. Internat. J. Robust Nonlinear Control 20 (2010), 1579-1593. · Zbl 1204.93043 · doi:10.1002/rnc.1531
[16] Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50 (2005), 169-182. · doi:10.1109/TAC.2004.841888
[17] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. · doi:10.1109/TAC.2004.834113
[18] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45 (2009), 1165-1175. · Zbl 1162.93308 · doi:10.1016/j.automatica.2008.12.015
[19] Sontag, E. D.: Input to state stability: basic concepts and results. Proc. CIME Summer Course on Nonlinear and Optimal Control Theory 2004, pp. 462-488.
[20] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680-1685. · doi:10.1109/TAC.2007.904277
[21] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895. · doi:10.1109/TAC.2010.2076250
[22] Wang, X., Lemmon, M. D.: Event-triggering in distributed networked control systems. IEEE Trans. Automat. Control 56 (2011), 586-601. · doi:10.1109/TAC.2010.2057951