zbMATH — the first resource for mathematics

The \((1-\mathbb{E})\)-transform in combinatorial Hopf algebras. (English) Zbl 1228.05290
Let sym be the commutative algebra of symmetric functions in countably infinite many variables \(x_1, x_2, \dots,\) Sym the non-commutative symmetric functions, FQSym the free quasi-symmetric functions, WQSym the word quasi-symmetric functions and PQSym the parking quasi-symmetric functions. The authors extend to these non-commutative combinatorial Hopf algebras the endomorphism of sym which sends the first power-sum to zero and leaves the other power-sums invariant. This is a “transformation of alphabets”, the (\(1-\mathbb E\))-transform, where \(\mathbb E\) is the “exponential alphabet”. See sections 1 and 2 of the paper for an explanation of this terminology – it is too technical to explain here.
The authors define the small derangement algebra \(\mathcal D^{(0)}=\mathbf{Sym}^{\sharp}\), a Hopf subalgebra of Sym, by imitating the construction of the peak algebra of N. Bergeron, F. Hivert and J.-Y. Thibon [“The peak algebra and the Hecke-Clifford algebras at \(q=0\),” J. Comb. Theory, Ser. A 107, No. 1, 1–19 (2004; Zbl 1107.05092)]. This recovers M. Schocker’s idempotents for derangement numbers [“Idempotents for derangement numbers,” Discrete Math. 269, No. 1–3, 239–248 (2003; Zbl 1023.05010)]. This leads to a construction of subalgebras of the descent algebra analogous to the peak algebra, and the authors study their representation theory. The case of WQSym leads to similar subalgebras of the Solomon-Tits algebras. For FQSym, the study of the transformatiom comes down to a solution of the Tsetlin library in the uniform case. PQSym has an internal product extending that of \(\mathbf{WQSym}^*\). Nothing new arises for PQSym, nor for the Catalan algebra CQSym [see J.-C. Novelli and J.-Y. Thibon, “Hopf algebras and dendriform structures arising from parking functions,” Fundam. Math. 193, No. 3, 189–241 (2007; Zbl 1127.16033)].

05E05 Symmetric functions and generalizations
16T30 Connections of Hopf algebras with combinatorics
Full Text: DOI
[1] Aguiar, M., Novelli, J.-C., Thibon, J.-Y.: Unital versions of the higher order peak algebras, arXiv:0810.4634, FPSAC’09 (Linz) · Zbl 1391.16033
[2] Bidigare, P.; Hanlon, P.; Rockmore, D., A combinatorial description of the spectrum of the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J., 99, 135-174, (1999) · Zbl 0955.60043
[3] Bergeron, N.; Hivert, F.; Thibon, J.-Y., The peak algebra and the Hecke-Clifford algebras at \(q=0,\) J. Comb. Theory A, 117, 1-19, (2004) · Zbl 1107.05092
[4] Blessenohl, D.; Laue, H., The module structure of Solomon’s descent algebra, J. Aust. Math. Soc., 72, 317-333, (2002) · Zbl 1062.20010
[5] Désarménien, J.: Une autre interprétation du nombre de dérangements. Sémin. Lothar. Comb. 8, 11-16 (1984)
[6] Désarménien, J., Wachs, M.: Descentes sur les dérangements et mots circulaires. Sémin. Lothar. Comb. 19, 13-21 (1988)
[7] Désarménien, J.; Wachs, M., Descent classes of permutations with a given number of fixed points, J. Comb. Theory Ser. A, 64, 311-328, (1993) · Zbl 0794.05001
[8] Deutsch, E.; Shapiro, L., A survey of the Fine numbers, Discrete Math., 241, 241-265, (2001) · Zbl 0992.05011
[9] Duchamp, G.; Hivert, F.; Thibon, J.-Y., Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Int. J. Algebra Comput., 12, 671-717, (2002) · Zbl 1027.05107
[10] Duchamp, G., Hivert, F., Novelli, J.-C., Thibon, J.-Y.: Noncommutative symmetric functions VII: free quasi-symmetric functions revisited, arXiv:0809.4479 · Zbl 1233.05200
[11] Duchamp, G.; Klyachko, A.; Krob, D.; Thibon, J.-Y., Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras, Discrete Math. Theor. Comput. Sci., 1, 159-216, (1997) · Zbl 0930.05097
[12] Gelfand, I. M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V. S.; Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math., 112, 218-348, (1995) · Zbl 0831.05063
[13] Hivert, F.; Novelli, J.-C.; Thibon, J.-Y., The algebra of binary search trees, Theor. Comput. Sci., 339, 129-165, (2005) · Zbl 1072.05052
[14] Lothaire, N.: Combinatorics on Words. Cambridge University Press, Cambridge (1997) · Zbl 0874.20040
[15] Garsia, A. M.; Reutenauer, C., A decomposition of Solomon’s descent algebra, Adv. Math., 77, 189-262, (1989) · Zbl 0716.20006
[16] Garsia, A. M.; Wallach, N.\(, r\)-QSym is free over Sym, J. Comb. Theory A, 114, 704-732, (2007) · Zbl 1115.05094
[17] Gessel, I.; Reutenauer, C., Counting permutations with given cycle structure and descent set, J. Comb. Theory A, 64, 189-215, (1993) · Zbl 0793.05004
[18] Hivert, F.: Combinatoire des fonctions quasi-symétriques. Thèse de Doctorat, Marne-La-Vallée (1999)
[19] Krob, D.; Leclerc, B.; Thibon, J.-Y., Noncommutative symmetric functions II: Transformations of alphabets, Int. J. Algebra Comput., 7, 181-264, (1997) · Zbl 0907.05055
[20] Lascoux, A.: Symmetric Functions and Combinatorial Operators on Polynomials. CBMS Regional Conference Series in Mathematics, vol. 99. American Math. Soc., Providence (2003), xii+268 pp. · Zbl 1039.05066
[21] Lascoux, A., Schützenberger, M.P.: Formulaire Raisonné de Fonctions Symétriques. Publ. Math. Univ. Paris 7, Paris (1985)
[22] Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, London (1995) · Zbl 0824.05059
[23] Malvenuto, C.; Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 967-982, (1995) · Zbl 0838.05100
[24] Novelli, J.-C., Saliola, F., Thibon, J.-Y.: Representation theory of the higher order peak algebras. Preprint 0906.5236 [math.CO] · Zbl 1239.05194
[25] Novelli, J.-C., Thibon, J.-Y.: A Hopf algebra of parking functions. In: FPSAC’04, Vancouver (2004)
[26] Novelli, J.-C.; Thibon, J.-Y., Parking functions and descent algebras, Ann. Comb., 11, 59-68, (2007) · Zbl 1115.05095
[27] Novelli, J.-C., Thibon, J.-Y.: Polynomial realizations of some trialgebras. In: FPSAC’06. Also preprint arXiv:math.CO/0605061
[28] Novelli, J.-C.; Thibon, J.-Y., Hopf algebras and dendriform structures arising from parking functions, Fundam. Math., 193, 189-241, (2007) · Zbl 1127.16033
[29] Novelli, J.-C.; Thibon, J.-Y., Noncommutative symmetric functions and Lagrange inversion, Adv. Appl. Math., 40, 8-35, (2008) · Zbl 1133.05101
[30] Patras, F.; Schocker, M., Twisted Descent Algebras and the Solomon-Tits Algebra, Adv. Math., 199, 151-184, (2006) · Zbl 1154.16029
[31] Saliola, F., On the quiver of the descent algebra, J. Algebra, 320, 3866-3894, (2008) · Zbl 1200.20003
[32] Schocker, M., Idempotents for derangement numbers, Discrete Math., 269, 239-248, (2003) · Zbl 1023.05010
[33] Schocker, M., The module structure of the Solomon-Tits algebra of the symmetric group, J. Algebra, 301, 554-586, (2006) · Zbl 1155.20012
[34] Scharf, T.; Thibon, J.-Y., A Hopf algebra approach to inner plethysm, Adv. Math., 104, 30-58, (1994) · Zbl 0830.20027
[35] Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (electronic), http://www.research.att.com/ njas/sequences/ · Zbl 1044.11108
[36] Wachs, M., On \(q\)-derangement numbers, Proc. Am. Math. Soc., 106, 273-278, (1989) · Zbl 0669.05006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.