On the distribution of congruent numbers. (English) Zbl 1228.11083

A positive integer is said to be a congruent number if it is equal to the area of a right triangle with rational sides. It is known that a positive integer \(n\) is a congruent number if and only if the elliptic curve \(y^2=x(x^2-n^2)\) has positive Mordell-Weil rank. In this article the authors prove that for any integer \(m>1\), any congruence class modulo \(m\) contains infinitely many congruent numbers \(n\), inequivalent modulo squares, such that the rank of the elliptic curve \(y^2=x(x^2-n^2)\) is greater than or equal to two.


11G05 Elliptic curves over global fields
11D25 Cubic and quartic Diophantine equations


Full Text: DOI


[1] R. Alter and T. B. Curtz, A note on congruent numbers, Math. Comp. 28 (1974), 303-305. · Zbl 0291.10016 · doi:10.2307/2005838
[2] M. A. Bennett, Lucas’ square pyramid problem revisited, Acta Arith. 105 (2002), no. 4, 341-347. · Zbl 1090.11019 · doi:10.4064/aa105-4-3
[3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[4] J. S. Chahal, Congruent numbers and elliptic curves, Amer. Math. Monthly 113 (2006), no. 4, 308-317. · Zbl 1099.11030 · doi:10.2307/27641916
[5] H. Cohen, A course in computational algebraic number theory , Springer, Berlin, 1993. · Zbl 0786.11071
[6] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349-366. · Zbl 0588.14026 · doi:10.1007/BF01388432
[7] F. R. Nemenzo, All congruent numbers less than 40000, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 1, 29-31. · Zbl 0922.11023 · doi:10.3792/pjaa.74.29
[8] K. Noda and H. Wada, All congruent numbers less than 10,000, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 6, 175-178. · Zbl 0795.11012 · doi:10.3792/pjaa.69.175
[9] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves , Springer, New York, 1994. · Zbl 0911.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.