Ohno, Yasuo; Zudilin, Wadim Zeta stars. (English) Zbl 1228.11132 Commun. Number Theory Phys. 2, No. 2, 325-347 (2008). Summary: We present two new families of identities for the multiple zeta (star) values: The first one generalizes the formula \(\zeta^*(\{2\}_n, 1) = 2\zeta(2n + 1)\), where \(\{2\}_n\) denotes the \(n\)-tuple \((2, 2, \dots, 2)\), while the second family is a weighted analogue of Euler’s formula \(\sum_{l=2}^{n-1} \zeta(l, n-l) = \zeta(n)\) \((n\geq 3)\). Cited in 5 ReviewsCited in 41 Documents MSC: 11M32 Multiple Dirichlet series and zeta functions and multizeta values 33B30 Higher logarithm functions Keywords:multiple zeta (star) values PDF BibTeX XML Cite \textit{Y. Ohno} and \textit{W. Zudilin}, Commun. Number Theory Phys. 2, No. 2, 325--347 (2008; Zbl 1228.11132) Full Text: DOI Link OpenURL