zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical analysis of fractional-order modified logistic model. (English) Zbl 1228.34008
Summary: We study a fractional differential equation model of the single species multiplicative Allee effect. First we study the stability of equilibrium points. Further we give some sufficient conditions ensuring the existence and uniqueness of integral solution. In the last section we perform several numerical simulations to validate our analytical findings.

34A08Fractional differential equations
34C60Qualitative investigation and simulation of models (ODE)
45J05Integro-ordinary differential equations
92D25Population dynamics (general)
Full Text: DOI
[1] Allee, W. C.: Animal aggregations, (1931)
[2] Stephen, P. A.; Sutherland, W. J.: Consequences of the allee effect for behaviour ecology and conservation, Trends ecol. Evol. 14, 401-404 (1999)
[3] Courchamp, F.; Berec, L.; Gascoigne, J.: Allee effects in ecology and conservation, (2008)
[4] Aguirre, P.; Gonzalez-Olivares, E.; Saez, E.: Three limit cycles in a Leslie--gower predator--prey model with additive allee effect, SIAM J. Appl. math. 69, 1244-1262 (2009) · Zbl 1184.92046 · doi:10.1137/070705210
[5] El-Sayed, A. M. A.; El-Mesiry, A. E. M.; El-Saka, H. A. A.: On the fractional order logistic equation, Appl. math. Lett. 20, 817-823 (2007) · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[6] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[7] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (1997) · Zbl 0917.73004
[8] Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.: Equilibrium points, stability and numerical solutions of fractional-order predator--prey and rabies models, J. math. Anal. appl. 325, 542-553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[9] Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann--Liouville fractional derivatives, Rheol. acta 45, 765-771 (2006)
[10] Magin, Richard L.: Fractional calculus models of complex dynamics in biological tissues, Comput. math. Appl. 59, 1586-1593 (2010) · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039
[11] Das, Shantanu: Functional fractional calculus for system identification and controls, (2007)
[12] Diethelm, K.: The analysis of fractional differential equations, (2010) · Zbl 1215.34001
[13] , Applications of fractional calculus in physics (2000) · Zbl 0998.26002
[14] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006) · Zbl 1092.45003
[15] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[16] Sabatier, J.; Agrawal, O. P.; Machado, J. A. Tenreiro: Advances in fractional calculus: theoretical developments and applications in physics and engineering, (2007) · Zbl 1116.00014
[17] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[18] Abbas, S.: Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Differential equations 2011, No. 09, 1-11 (2011) · Zbl 1211.34096 · http://www.emis.de/journals/EJDE/Volumes/2011/09/abstr.html
[19] Momani, S.; Qaralleh, R.: Numerical approximations and PadĂ© approximants for a fractional population growth model, Appl. math. Model. 31, 1907-1914 (2007) · Zbl 1167.45300 · doi:10.1016/j.apm.2006.06.015
[20] Hadid, S. B.: Local and global existence theorems on differential equations of non-integer order, J. fract. Calc. 7, 101-105 (1995) · Zbl 0839.34003
[21] Hadid, S. B.; Masaedeh, B.; Momani, S.: On the existence of maximal and minimal solutions of differential equations of non-integer order, J. fract. Calc. 9, 41-44 (1996) · Zbl 0862.34008
[22] Ibrahim, Rabha W.; Momani, S.: On the existence and uniqueness of solutions of a class of fractional differential equations, J. math. Anal. appl. 334, 1-10 (2007) · Zbl 1123.34302 · doi:10.1016/j.jmaa.2006.12.036
[23] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor--corrector approach for the numerical solution of fractional dierential equations, Nonlinear dynam. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[24] Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer. algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be