zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators. (English) Zbl 1228.34013
Summary: We prove the existence of solutions of fractional integrodifferential equations by using the resolvent operators and fixed point theorem. An example is given to illustrate the abstract results.

34A08Fractional differential equations
45K05Integro-partial differential equations
34K05General theory of functional-differential equations
Full Text: DOI
[1] Hilfer, R.: Applications of fractional calculus in physics, (2000) · Zbl 0998.26002
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006) · Zbl 1092.45003
[3] Lakshmikantham, V.; Leela, S.; Devi, J. Vasundhara: Theory of fractional dynamic systems, (2009) · Zbl 1188.37002
[4] Metzler, F.; Schick, W.; Kilian, H. G.; Nonnenmacher, T. F.: Relaxation in filled polymers: a fractional calculus approach, Journal of chemical physics 103, 7180-7186 (1995)
[5] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[6] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[7] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives; theory and applications, (1993) · Zbl 0818.26003
[8] Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of time fractional reaction--diffusion systems, Journal of computational and applied mathematics 220, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[9] J. Nakagawa, K. Sakamoto, M. Yamamoto, Overview to mathematical analysis for fractional diffusion equations -- new mathematical aspects motivated by industrial collaboration, Journal of Math-for-Industry, 2, 2010A-10, 99--108. · Zbl 1206.35247 · http://gcoe-mi.jp/english/./temp/publish/a3e3b09f4bedd92df6c8ef07b57d5568.pdf
[10] Bonilla, B.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J. J.: Fractional differential equations as alternative models to nonlinear differential equations, Applied mathematics and computation 187, 79-88 (2007) · Zbl 1120.34323 · doi:10.1016/j.amc.2006.08.105
[11] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics reports 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[12] Metzler, R.; Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of physics A: mathematical and general 37, R161-R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[13] Balachandran, K.; Trujillo, J. J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear analysis: theory, methods and applications 72, 4587-4593 (2010) · Zbl 1196.34007 · doi:10.1016/j.na.2010.02.035
[14] Balachandran, K.; Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic journal of qualitative theory of differential equations 4, 1-12 (2010) · Zbl 1201.34091 · emis:journals/EJQTDE/2010/201004.pdf
[15] Balachandran, K.; Kiruthika, S.; Trujillo, J. J.: Existence results for fractional impulsive integrodifferential equations in Banach spaces, Communications in nonlinear science and numerical simulation 16, 1970-1977 (2011) · Zbl 1221.34215 · doi:10.1016/j.cnsns.2010.08.005
[16] Hernández, E.; O’regan, D.; ; Balachandran, K.: On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear analysis: theory, methods and applications 73, 3462-3471 (2010) · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[17] Luchko, Y. F.; Rivero, M.; Trujillo, J. J.; Velasco, M. P.: Fractional models, non-locality, and complex systems, Computers and mathematics with applications 59, 1048-1056 (2010) · Zbl 1189.37095 · doi:10.1016/j.camwa.2009.05.018
[18] He, J. H.: Some applications of nonlinear fractional differential equations and their approximations, Bulletin of science, technology and society 15, 86-90 (1999)
[19] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, part II, Geophysical journal of the royal astronomical society 13, 529-539 (1967)
[20] Li, M.; Chen, C.; Li, F. B.: On fractional powers of generators of fractional resolvent families, Journal of functional analysis 259, 2702-2726 (2010) · Zbl 1203.47021 · doi:10.1016/j.jfa.2010.07.007
[21] Prüss, J.: Evolutionary integral equations and applications, (1993) · Zbl 0784.45006
[22] Smart, D. R.: Fixed point theorems, (1980) · Zbl 0427.47036
[23] E.G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002