zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions. (English) Zbl 1228.34021
Summary: We investigate the existence and uniqueness of solutions for an impulsive mixed boundary value problem of nonlinear differential equations of fractional order $\alpha \in (1,2]$. Our results are based on some standard fixed point theorems. Some examples are presented to illustrate the main results.

34A08Fractional differential equations
34B37Boundary value problems for ODE with impulses
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
Full Text: DOI
[1] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives, theory and applications, (1993) · Zbl 0818.26003
[2] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006) · Zbl 1092.45003
[4] , Advances in fractional calculus: theoretical developments and applications in physics and engineering (2007) · Zbl 1116.00014
[5] Lakshmikantham, V.; Leela, S.; Devi, J. Vasundhara: Theory of fractional dynamic systems, (2009) · Zbl 1188.37002
[6] Lazarević, M. P.; Spasić, A. M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math. comput. Modelling 49, 475-481 (2009) · Zbl 1165.34408 · doi:10.1016/j.mcm.2008.09.011
[7] Agarwal, R. P.; Zhou, Y.; He, Y.: Existence of fractional neutral functional differential equations, Comput. math. Appl. 59, 1095-1100 (2010) · Zbl 1189.34152 · doi:10.1016/j.camwa.2009.05.010
[8] Zhou, Y.; Jiao, F.; Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear anal. 71, 3249-3256 (2009) · Zbl 1177.34084 · doi:10.1016/j.na.2009.01.202
[9] Zhou, Y.; Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations, Nonlinear anal.: RWA 11, 4465-4475 (2010) · Zbl 1260.34017
[10] Wang, J.; Zhou, Y.: A class of fractional evolution equations and optimal controls, Nonlinear anal.: RWA 12, 262-272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
[11] Bai, Z. B.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[12] Ahmad, B.; Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. Appl. 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[13] Ahmad, B.; Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. math. Comput. 217, 480-487 (2010) · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080
[14] Wei, Z.; Li, Q.; Che, J.: Initial value problems for fractional differential equations involving Riemann-iouville sequential fractional derivative, J. math. Anal. appl. 367, 260-272 (2010) · Zbl 1191.34008 · doi:10.1016/j.jmaa.2010.01.023
[15] Ahmad, B.: Existence of solutions for fractional differential equations of order q$\in $(2,3] with anti-periodic boundary conditions, J. appl. Math. comput. 34, 385-391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4
[16] Nieto, J. J.: Maximum principles for fractional differential equations derived from Mittag--Leffler functions, Appl. math. Lett. 23, 1248-1251 (2010) · Zbl 1202.34019 · doi:10.1016/j.aml.2010.06.007
[17] Zhang, S. Q.: Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. math. Appl. 59, 1300-1309 (2010) · Zbl 1189.34050 · doi:10.1016/j.camwa.2009.06.034
[18] Ahmad, B.; Alsaedi, A.: Existence and uniqueness of solutions for coupled systems of higher order nonlinear fractional differential equations, Fixed point theory appl 2010, 17 (2010) · Zbl 1208.34001 · doi:10.1155/2010/364560
[19] G. Wang, L. Zhang, S.K. Ntouyas, Multiplicity of positive solutions for fractional-order three-point boundary value problems, Commun. Appl. Nonlinear Anal. (in press). · Zbl 1307.34121
[20] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[21] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[22] Zavalishchin, S. T.; Sesekin, A. N.: Dynamic impulse systems. Theory and applications, (1997) · Zbl 0880.46031
[23] Wang, G.; Zhang, L.; Song, G.: Extremal solutions for the first order impulsive functional differential equations with upper and lower solutions in reversed order, J. comput. Appl. math. 235, 325-333 (2010) · Zbl 1210.34110 · doi:10.1016/j.cam.2010.06.014
[24] Ahmad, B.; Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear anal.: hybrid syst. 3, 251-258 (2009) · Zbl 1193.34056 · doi:10.1016/j.nahs.2009.01.008
[25] Ahmad, B.; Sivasundaram, S.: Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear anal.: hybrid syst. 4, 134-141 (2010) · Zbl 1187.34038 · doi:10.1016/j.nahs.2009.09.002
[26] Mophou, G. M.: Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear anal. 72, 1604-1615 (2010) · Zbl 1187.34108 · doi:10.1016/j.na.2009.08.046
[27] Chang, Y. -K.; Nieto, J. J.; Zhao, Zhi-Han: Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear anal.: hybrid syst. 4, 593-599 (2010) · Zbl 1209.34093 · doi:10.1016/j.nahs.2010.03.006
[28] Zhang, X.; Huang, X.; Liu, Z.: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear anal. Hybrid syst. 4, 775-781 (2010) · Zbl 1207.34101 · doi:10.1016/j.nahs.2010.05.007
[29] Tian, Y.; Bai, Z.: Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. math. Appl. 59, 2601-2609 (2010) · Zbl 1193.34007 · doi:10.1016/j.camwa.2010.01.028
[30] R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. (in press). · Zbl 1226.26005 · http://online.watsci.org/abstract_pdf/2011v18/v18n4a-pdf/3.pdf
[31] Wang, G.; Ahmad, B.; Zhang, L.: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear anal. 74, 792-804 (2011) · Zbl 1214.34009 · doi:10.1016/j.na.2010.09.030
[32] Jahanshahi, M.: Reduction of the Neumann, Poincarè and Robin--zaremba boundary value problems for Laplace equation to the Dirichlet boundary value problem, Appl. comput. Math. 6, 51-57 (2007) · Zbl 1209.35036 · http://www.science.az/acm/v_6_n_1_2007/titul.htm
[33] Den Berg, M. Van; Gilkey, P.; Kirsten, K.; Kozlov, V. A.: Heat content asymptotics for Riemannian manifolds with zaremba boundary conditions, Potential anal. 26, 225-254 (2007) · Zbl 1114.58022 · doi:10.1007/s11118-005-9001-1
[34] Avramidi, I. G.: Heat kernel asymptotics of zaremba boundary value problem, Math. phys. Anal. geom. 7, 9-46 (2004) · Zbl 1079.58018 · doi:10.1023/B:MPAG.0000022837.63824.4c
[35] Sun, J. X.: Nonlinear functional analysis and its application, (2008)