×

Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. (English) Zbl 1228.34136

Summary: Let \(L\) denote the operator generated in \(L_2(\mathbb R_+)\) by the Sturm-Liouville problem
\[ -y''+q(x)y=\lambda^2y,\quad x\in\mathbb R_+=[0,\infty),\quad y'(0)/y(0)=\alpha_0+\alpha_1\lambda+\alpha_2\lambda^2, \]
where \(q\) is a complex-valued function and \(\alpha_i\in\mathbb C\), \(i=0,1,2\), with \(\alpha_2\neq 0\). We investigate the eigenvalues and the spectral singularities of \(L\) and obtain analogs of Naimark and Pavlov conditions for \(L\).

MSC:

34L05 General spectral theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34B24 Sturm-Liouville theory

References:

[1] M. A. Naĭmark, “Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,” American Mathematical Society Translations Series 2, vol. 16, pp. 103-193, 1960. · Zbl 0100.29504
[2] J. Schwartz, “Some non-selfadjoint operators,” Communications on Pure and Applied Mathematics, vol. 13, pp. 609-639, 1960. · Zbl 0096.08901 · doi:10.1002/cpa.3160130405
[3] B. S. Pavlov, “The non-selfadjoint Schrödinger operator,” Topics in Mathematical Physics, vol. 1, pp. 87-110, 1967.
[4] V. E. Lyance, “A differential operator with spectral singularities. I,” American Mathematical Society Translations Series 2, vol. 60, pp. 185-225, 1967. · Zbl 0189.38102
[5] V. E. Lyance, “A differential operator with spectral singularities. II,” American Mathematical Society Translations Series 2, vol. 60, pp. 227-283, 1967. · Zbl 0189.38102
[6] A. M. Krall, “A nonhomogeneous eigenfunction expansion,” Transactions of the American Mathematical Society, vol. 117, pp. 352-361, 1965. · Zbl 0141.32301 · doi:10.2307/1994212
[7] A. M. Krall, “The adjoint of a differential operator with integral boundary conditions,” Proceedings of the American Mathematical Society, vol. 16, pp. 738-742, 1965. · Zbl 0141.32302 · doi:10.2307/2033913
[8] M. Adıvar and E. Bairamov, “Spectral properties of non-selfadjoint difference operators,” Journal of Mathematical Analysis and Applications, vol. 261, no. 2, pp. 461-478, 2001. · Zbl 0992.39018 · doi:10.1006/jmaa.2001.7532
[9] M. Adıvar and E. Bairamov, “Difference equations of second order with spectral singularities,” Journal of Mathematical Analysis and Applications, vol. 277, no. 2, pp. 714-721, 2003. · Zbl 1025.39001 · doi:10.1016/S0022-247X(02)00655-8
[10] E. Bairamov, Ö. \cCakar, and A. M. Krall, “An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities,” Journal of Differential Equations, vol. 151, no. 2, pp. 268-289, 1999. · Zbl 0945.34067 · doi:10.1006/jdeq.1998.3518
[11] E. Bairamov, Ö. \cCakar, and A. M. Krall, “Non-selfadjoint difference operators and Jacobi matrices with spectral singularities,” Mathematische Nachrichten, vol. 229, pp. 5-14, 2001. · Zbl 0990.47033 · doi:10.1002/1522-2616(200109)229:1<5::AID-MANA5>3.0.CO;2-C
[12] E. Bairamov and A. O. \cCelebi, “Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators,” The Quarterly Journal of Mathematics. Oxford. Second Series, vol. 50, no. 200, pp. 371-384, 1999. · Zbl 0945.47026 · doi:10.1093/qjmath/50.200.371
[13] A. M. Krall, E. Bairamov, and Ö. \cCakar, “Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition,” Journal of Differential Equations, vol. 151, no. 2, pp. 252-267, 1999. · Zbl 0927.34063 · doi:10.1006/jdeq.1998.3519
[14] A. M. Krall, E. Bairamov, and Ö. \cCakar, “Spectral analysis of non-selfadjoint discrete Schrödinger operators with spectral singularities,” Mathematische Nachrichten, vol. 231, pp. 89-104, 2001. · Zbl 1058.47029 · doi:10.1002/1522-2616(200111)231:1<89::AID-MANA89>3.0.CO;2-Y
[15] P. A. Binding, P. J. Browne, and B. A. Watson, “Transformations between Sturm-Liouville problems with eigenvalue dependent and independent boundary conditions,” The Bulletin of the London Mathematical Society, vol. 33, no. 6, pp. 749-757, 2001. · Zbl 1030.34027 · doi:10.1112/S0024609301008177
[16] P. A. Binding, P. J. Browne, and B. A. Watson, “Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. I,” Proceedings of the Edinburgh Mathematical Society, vol. 33, pp. 749-757, 2001. · Zbl 1030.34027
[17] P. A. Binding, P. J. Browne, and B. A. Watson, “Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. II,” Journal of Computational and Applied Mathematics, vol. 148, no. 1, pp. 147-168, 2002. · Zbl 1019.34028 · doi:10.1016/S0377-0427(02)00579-4
[18] W. J. Code and P. J. Browne, “Sturm-Liouville problems with boundary conditions depending quadratically on the eigenparameter,” Journal of Mathematical Analysis and Applications, vol. 309, no. 2, pp. 729-742, 2005. · Zbl 1090.34020 · doi:10.1016/j.jmaa.2004.11.067
[19] V. A. Marchenko, Sturm-Liouville Operators and Applications, vol. 22 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1986. · Zbl 0592.34011
[20] E. P. Dolzhenko, “Boundary value uniqueness theorems for analytic functions,” Mathematical Notes, vol. 26, pp. 437-442, 1979. · Zbl 0441.30044 · doi:10.1007/BF01230985
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.