zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytic sharp fronts for the surface quasi-geostrophic equation. (English) Zbl 1228.35010
This work is concerned with the evolution of sharp fronts for the quasi-geostrophic surface waves. The nonlinear integro-differential equation governing the evolution wave fronts in such flows was already obtained. The authors consider a simplified version of this equation and study the existence of analytical solutions through extensive calculations. By carefully investigating the evolution of the second space derivative of the unknown function the authors prove that the new system fits well into the abstract version of the celebrated Cauchy-Kovalevskaya theorem.

35A10Cauchy-Kowalewski theorems
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35R11Fractional partial differential equations
Full Text: DOI
[1] Constantin P., Majda A., Tabak E.: Singular front formation in a model for quasigesotrophic flow. Phys. Fluids 6(1), 9--11 (1994) · Zbl 0826.76014 · doi:10.1063/1.868050
[2] Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2 quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495--1533 (1994) · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[3] Córdoba D., Fefferman C., Rodrigo J.: Almost sharp fronts for the surface Quasi-Geostrophic equation. PNAS 101(9), 2487--2491 (2004) · Zbl 1063.76011 · doi:10.1073/pnas.0308154101
[4] Córdoba D., Fontelos M.A., Mancho A.M., Rodrigo J.: Evidence of singularities for a family of contour dynamics equations. PNAS 102(17), 5949--5952 (2005) · Zbl 1135.76315 · doi:10.1073/pnas.0501977102
[5] Fefferman, C., Rodrigo, J.: On the limit of almost sharp fronts for the Surface Quasi-Geostrophic equation. In preparation. · Zbl 1063.76011
[6] Gancedo F.: Existence for the {$\alpha$}-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217(6), 2569--2598 (2008) · Zbl 1148.35099 · doi:10.1016/j.aim.2007.10.010
[7] Majda, A., Bertozzi, A.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics 27, Cambridge: Cambridge Univ. Press, 2002 · Zbl 0983.76001
[8] Madja A., Tabak E.: A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Physisa D 98(2-4), 515--522 (1996) · Zbl 0899.76105 · doi:10.1016/0167-2789(96)00114-5
[9] Rodrigo J.: The vortex patch problem for the Quasi-Geostrophic equation. PNAS 101(9), 2484--2486 (2004) · Zbl 1063.76009 · doi:10.1073/pnas.0308158101
[10] Rodrigo J.: On the evolution of sharp fronts for the quasi-geostrophic equation. Comm. Pure Appl. Math. 58(6), 821--866 (2005) · Zbl 1073.35006 · doi:10.1002/cpa.20059
[11] Sammartino M., Caflisch R.E.: Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192, 433--461 (1998) · Zbl 0913.35102 · doi:10.1007/s002200050304
[12] Sammartino M., Caflisch R.E.: Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space II. Construction of Navier-Stokes Solution. Commun. Math. Phys. 192, 463--491 (1998) · Zbl 0913.35103 · doi:10.1007/s002200050305