zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of the $(\frac{G'}{G})$-expansion method for nonlinear evolution equations. (English) Zbl 1228.35195
Summary: In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The $(\frac{G'}{G})$-expansion method presents a wider applicability for handling nonlinear wave equations.

35Q53KdV-like (Korteweg-de Vries) equations
35C07Traveling wave solutions of PDE
35G55Initial value problems for nonlinear higher-order systems of PDE
74J30Nonlinear waves (solid mechanics)
35C09Trigonometric solutions of PDE
Full Text: DOI
[1] Ablowitz, M. J.; Segur, H.: Solitons and inverse scattering transform. (1981) · Zbl 0472.35002
[2] Vakhnenko, V. O.; Parkes, E. J.; Morrison, A. J.: Chaos solitons fractals. 17, No. 4, 683 (2003)
[3] Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. Bäcklund transformations, 1157 (1980)
[4] Malfliet, W.: Am. J. Phys.. 60, 650 (1992)
[5] Malfliet, W.; Hereman, W.: Phys. scr.. 54, 563 (1996)
[6] Wazwaz, A. M.: Appl. math. Comput.. 154, No. 3, 713 (2004)
[7] El-Wakil, S. A.; Abdou, M. A.: Chaos solitons fractals. 31, No. 4, 840 (2007)
[8] Fan, E.: Phys. lett. A. 277, 212 (2000)
[9] Wazwaz, A. M.: Appl. math. Comput.. 187, 1131 (2007)
[10] Wazwaz, A. M.: Math. comput. Modelling. 40, 499 (2004)
[11] Yusufo&gbreve, E.; Lu; Bekir, A.; Alp, M.: Chaos solitons fractals. 37, 1193 (2008)
[12] Fan, E.; Zhang, H.: Phys. lett. A. 246, 403 (1998)
[13] He, J. H.; Wu, X. H.: Chaos solitons fractals. 30, 700 (2006)
[14] He, J. H.; Abdou, M. A.: Chaos solitons fractals. 34, 1421 (2007)
[15] El-Wakil, S. A.; Abdou, M. A.: Nonlinear anal.. 68, No. 2, 235 (2008)
[16] Wang, M. L.; Li, X.; Zhang, J.: Phys. lett. A. 372, No. 4, 417 (2008)
[17] Zhang, S.; Tong, J. -L.; Wang, W.: Phys. lett. A. 372, 2254 (2008)
[18] Kudryashov, N. A.; Pickering, A.: J. phys. A: math. Gen.. 31, 9505 (1998)
[19] Kudryashov, N. A.: J. phys. A: math. Gen.. 32, 999 (1999)
[20] Wazwaz, A. M.: Appl. math. Comput.. 182, 529 (2006)
[21] Wazwaz, A. M.: Commun. nonlinear sci. Numer. simul.. 13, No. 6, 1039 (2008)
[22] A. Bekir, A. Boz, Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations, Chaos Solitons Fractals, in press · Zbl 1197.35214
[23] Konopelchenko, B. G.; Dubrovsky, V. G.: Phys. lett. A. 102, 15 (1984) · Zbl 0557.35116
[24] Bekir, A.: Commun. nonlinear sci. Numer. simul.. 13, 1748 (2008)