×

zbMATH — the first resource for mathematics

On the persistent properties of solutions to semi-linear Schrödinger equation. (English) Zbl 1228.35229
Summary: We study persistent properties of solutions of the semi-linear Schrödinger equations in weighted spaces.

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
35D99 Generalized solutions to partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergh J., Interpolation Spaces. (1970)
[2] Birnir B., J. London Math. Soc. 53 pp 551– (1996)
[3] DOI: 10.1007/BFb0086749 · doi:10.1007/BFb0086749
[4] DOI: 10.1016/0362-546X(90)90023-A · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[5] DOI: 10.1353/ajm.2003.0040 · Zbl 1048.35101 · doi:10.1353/ajm.2003.0040
[6] DOI: 10.1016/0022-1236(91)90103-C · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[7] Escauriaza L., Math. Research Lett. 15 pp 957– (2008)
[8] DOI: 10.1137/S0036141095283017 · Zbl 0877.35028 · doi:10.1137/S0036141095283017
[9] DOI: 10.1007/BF02394567 · Zbl 0188.42601 · doi:10.1007/BF02394567
[10] DOI: 10.1016/0022-1236(79)90077-6 · Zbl 0396.35029 · doi:10.1016/0022-1236(79)90077-6
[11] Ginibre J., J. Math. Pure Appl. 64 pp 363– (1985)
[12] DOI: 10.1007/BF01162710 · Zbl 0617.35025 · doi:10.1007/BF01162710
[13] DOI: 10.1016/0022-1236(87)90002-4 · Zbl 0657.35033 · doi:10.1016/0022-1236(87)90002-4
[14] Hayashi N., Funkcial Ekvac. 31 pp 363– (1988)
[15] Kato T., Advances in Mathematics Supplementary Studies, Studies in Applied Math. 8 pp 93– (1983)
[16] Kato T., Ann. Inst. H. Poincarè, Physique Théorique 46 pp 113– (1987)
[17] DOI: 10.1002/cpa.3160410704 · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[18] DOI: 10.1002/cpa.3160460405 · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[19] DOI: 10.1007/s002220050272 · Zbl 0928.35158 · doi:10.1007/s002220050272
[20] DOI: 10.1215/S0012-7094-01-10638-8 · Zbl 1034.35145 · doi:10.1215/S0012-7094-01-10638-8
[21] DOI: 10.1090/S0002-9904-1961-10517-X · Zbl 0127.32002 · doi:10.1090/S0002-9904-1961-10517-X
[22] Stein E. M., Singular Integrals and Differentiability Properties of Functions. (1970) · Zbl 0207.13501
[23] Strichartz R. S., J. Math. Mech. 16 pp 1031– (1967)
[24] DOI: 10.1215/S0012-7094-77-04430-1 · Zbl 0372.35001 · doi:10.1215/S0012-7094-77-04430-1
[25] Tsutsumi Y., Funkcialaj Ekvacioj 30 pp 115– (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.