zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls. (English) Zbl 1228.45015
Summary: We investigate nonlocal problems for a class of fractional integrodifferential equations via fractional operators and optimal controls in Banach spaces. By using the fractional calculus, Hölder inequality, $p$-mean continuity and fixed point theorems, some existence results of mild solutions are obtained under the two cases of the semigroup $T(t)$, the nonlinear terms $f$ and $h$, and the nonlocal item $g$. Then, the existence conditions of optimal pairs of systems governed by a fractional integrodifferential equation with nonlocal conditions are presented. Finally, an example is given to illustrate the effectiveness of the results obtained.

45K05Integro-partial differential equations
34A08Fractional differential equations
49J15Optimal control problems with ODE (existence)
Full Text: DOI
[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006) · Zbl 1092.45003
[2] Lakshmikantham, V.; Leela, S.; Devi, J. V.: Theory of fractional dynamic systems, (2009) · Zbl 1188.37002
[3] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and differential equations, (1993) · Zbl 0789.26002
[4] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[5] Diethelm, K.; Freed, A. D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, Scientific computing in chemical engineering II-computational fluid dynamics, reaction engineering and molecular properties, 217-224 (1999)
[6] Gaul, L.; Klein, P.; Kempfle, S.: Damping description involving fractional operators, Mech. syst. Signal process. 5, 81-88 (1991)
[7] Glockle, W. G.; Nonnenmacher, T. F.: A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68, 46-53 (1995)
[8] Hilfer, R.: Applications of fractional calculus in physics, (2000) · Zbl 0998.26002
[9] Mainardi, F.: Fractional calculus, some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[10] Metzler, F.; Schick, W.; Kilian, H. G.; Nonnenmache, T. F.: Relaxation in filled polymers: a fractional calculus approach, J. chem. Phys. 103, 7180-7186 (1995)
[11] Agarwal, R. P.; Belmekki, M.; Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann--Liouville fractional derivative, Adv. difference equ. 2009 (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728
[12] Agarwal, R. P.; Benchohra, M.; Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[13] Ahmad, B.; Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray--Schauder degree theory, Topol. methods nonlinear anal. 35, 295-304 (2010) · Zbl 1245.34008
[14] Balachandran, K.; Park, J. Y.: Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear anal. 71, 4471-4475 (2009) · Zbl 1213.34008 · doi:10.1016/j.na.2009.03.005
[15] Bai, Z. B.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[16] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A.: Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. calc. Appl. anal. 11, 35-56 (2008) · Zbl 1149.26010
[17] El-Borai, M. M.: Semigroup and some nonlinear fractional differential equations, Appl. math. Comput. 149, 823-831 (2004) · Zbl 1046.34079 · doi:10.1016/S0096-3003(03)00188-7
[18] Henderson, J.; Ouahab, A.: Fractional functional differential inclusions with finite delay, Nonlinear anal. 70, 2091-2105 (2009) · Zbl 1159.34010 · doi:10.1016/j.na.2008.02.111
[19] Hu, L.; Ren, Y.; Sakthivel, R.: Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup forum 79, 507-514 (2009) · Zbl 1184.45006 · doi:10.1007/s00233-009-9164-y
[20] Jaradat, O. K.; Al-Omari, A.; Momani, S.: Existence of the mild solution for fractional semilinear initial value problems, Nonlinear anal. 69, 3153-3159 (2008) · Zbl 1160.34300 · doi:10.1016/j.na.2007.09.008
[21] Liu, H.; Chang, J. C.: Existence for a class of partial differential equations with nonlocal conditions, Nonlinear anal. 70, 3076-3083 (2009) · Zbl 1170.34346 · doi:10.1016/j.na.2008.04.009
[22] N’guérékata, G. M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions, Nonlinear anal. 70, 1873-1876 (2009) · Zbl 1166.34320 · doi:10.1016/j.na.2008.02.087
[23] Mophou, G. M.; N’guérékata, G. M.: Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup forum 79, 315-322 (2009) · Zbl 1180.34006 · doi:10.1007/s00233-008-9117-x
[24] Zhou, Yong; Jiao, Feng: Existence of mild solutions for fractional neutral evolution equations, Comput. math. Appl. 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[25] Zhou, Yong; Jiao, Feng: Nonlocal Cauchy problem for fractional evolution equations, Nonlinear anal. 11, 4465-4475 (2010) · Zbl 1260.34017
[26] Chang, Y. K.; Kavitha, V.; Arjunan, M. Mallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order, Nonlinear anal. 71, 5551-5559 (2009) · Zbl 1179.45010 · doi:10.1016/j.na.2009.04.058
[27] Wang, Jinrong; Zhou, Yong: A class of fractional evolution equations and optimal controls, Nonlinear anal. 12, 262-272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
[28] Araya, D.; Lizama, C.: Almost automorphic mild solutions to fractional differential equations, Nonlinear anal. 69, 3692-3705 (2008) · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[29] Cuevas, C.; Lizama, C.: Almost automorphic mild solutions to a class of fractional differential equations, Appl. math. Lett. 21, 1315-1319 (2008) · Zbl 1192.34006 · doi:10.1016/j.aml.2008.02.001
[30] Hernández, E.; O’regan, D.; Balachandran, K.: On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear anal. 73, 3462-3471 (2010) · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[31] Mophou, G. M.; N’guérékata, G. M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay, Appl. math. Comput. 216, 61-69 (2010) · Zbl 1191.34098 · doi:10.1016/j.amc.2009.12.062
[32] El-Borai, M. M.: The fundamental solutions for fractional evolution equations of parabolic type, J. appl. Math. stoch. Anal. 3, 197-211 (2004) · Zbl 1081.34053 · doi:10.1155/S1048953304311020
[33] El-Borai, M. M.: On some fractional evolution equations with nonlocal conditions, Int. J. Pure appl. Math. 24, 405-413 (2005) · Zbl 1090.35006
[34] Wei, W.; Xiang, X.; Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls, Optimization 55, 141-156 (2006) · Zbl 1101.45002 · doi:10.1080/02331930500530401
[35] Wang, Jinrong; Xiang, X.; Wei, W.: Periodic solutions of a class of integrodifferential impulsive periodic systems with time-varying generating operators on Banach space, Electron. J. Qual. theory differ. Equ., No. 4, 1-17 (2009) · Zbl 1178.45017 · emis:journals/EJQTDE/2009/200904.html
[36] Wang, Jinrong; Xiang, X.; Wei, W.: A class of nonlinear integrodifferential impulsive periodic systems of mixed type and optimal controls on Banach space, J. appl. Math. comput. 34, 465-484 (2010) · Zbl 1213.34092 · doi:10.1007/s12190-009-0332-8
[37] Wang, Jinrong; Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces, Results math. 58, 379-397 (2010) · Zbl 1209.34095 · doi:10.1007/s00025-010-0057-x
[38] Wang, Jinrong; Zhou, Yong: Study of an approximation process of time optimal control for fractional evolution systems in Banach spaces, Adv. difference equ. 2011 (2011) · Zbl 1222.49006 · doi:10.1155/2011/385324
[39] JinRong Wang, W. Wei, Yong Zhou, Fractional finite time delay evolution systems and optimal controls in infinite dimensional spaces, J. Dyn. Control Syst. (2011) (in press). · Zbl 1241.26005
[40] Wang, Jinrong; Zhou, Yong; Wei, W.: A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces, Commun. nonlinear sci. Numer. simul. (2011) · Zbl 1223.45007
[41] Pazy, A.: Semigroup of linear operators and applications to partial differential equations, (1983) · Zbl 0516.47023
[42] Zeidler, E.: Nonlinear functional analysis and its application II/A, (1990) · Zbl 0684.47028
[43] Hu, S.; Papageorgiou, N. S.: Handbook of multivalued analysis, theory, (1997) · Zbl 0887.47001