zbMATH — the first resource for mathematics

Redundancy relations for fault diagnosis in nonlinear uncertain systems. (English) Zbl 1228.62129
Summary: The problem of fault detection and isolation in nonlinear uncertain systems is studied within the scope of the analytical redundancy concept. The problem solution involves checking the redundancy relations existing among measured system inputs and outputs. A novel method is proposed for constructing redundancy relations based on system models described by differential equations whose right-hand sides are polynomials. The method involves a nonlinear transformation of the initial system model into a strict feedback form. Algebraic and geometric tools are used for this transformation. The features of the method are made particular for uncertain systems with a linear structure.

62N05 Reliability and life testing
93A30 Mathematical modelling of systems (MSC2010)
37N99 Applications of dynamical systems
Full Text: DOI EuDML
[1] Chow E. Y. and A.S. Willsky. (1984): Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control, Vol. AC-29, No. 7, pp. 603-614. · Zbl 0542.90040 · doi:10.1109/TAC.1984.1103593
[2] Comtet-Varga G., C. Christophe, V. Cocquempot and M. Staroswiecki. (1999): F.D.I. For the induction motor using elimination theory. Proceedings of the European Control Conference, Karlsruhe, Germany, (on CD-ROM)
[3] Cox D., Little J. and D. O’Shea. (1992): Ideals, Varieties and Algorithms. New York: Springer.
[4] De Persis C. and A. Isidori. (2001): A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, Vol. AC-46, No. 6, pp. 853-865. · Zbl 1009.93003 · doi:10.1109/9.928586 · gateway.webofknowledge.com
[5] De Persis C. and A. Isidori. (2002): Fault detection filters. International Journal of Robust and Nonlinear Control, Vol. 12, No. 6, pp. 729-747. · Zbl 1003.93019 · doi:10.1002/rnc.713
[6] Ding X. and P.M. Frank. (1993): An adaptive observer-based fault detection scheme for nonlinear dynamic systems. Proceedings of the 12-th IFAC World Congress, Sydney, Australia, Vol. 8, pp. 307-310
[7] Diop S. (1991): Elimination in control theory. - Mathematics of Control, Signals, and Systems, Vol. 14, No. 1, pp. 459-474 · Zbl 0727.93025 · doi:10.1007/BF02551378
[8] Frank P.M. (1990): Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results. Automatica, Vol. 26, No 3, pp. 459-474. · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[9] Gertler J. and M.M. Kunwer. (1993): Optimal residual decoupling for robust fault diagnosis. Proceedings of the International Conference Tooldiag’93, Toulouse, France, pp. 436-452. · Zbl 0817.93039 · doi:10.1080/00207179508921908
[10] Isermann R. (1984): Process fault detection based on modeling and estimation methods: A survey. Automatica, Vol. 20, No. 4, pp. 387-404. · Zbl 0539.90037 · doi:10.1016/0005-1098(84)90098-0
[11] Isidori A. (1989): Nonlinear Control Systems. Berlin: Springer. · Zbl 0931.93005
[12] Lou X.C., Willsky A.S. and G.L. Verghese. (1986): Optimally robust redundancy relations for failure detection in uncertain systems. Automatica, Vol. 22, No. 3, pp. 333-344. · Zbl 0596.93019 · doi:10.1016/0005-1098(86)90031-2
[13] Massoumnia M. A. (1986): A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, Vol. AC-31, No. 9, pp. 839-846. · Zbl 0599.93017 · doi:10.1109/TAC.1986.1104419
[14] Massoumnia M. A., G. C. Verghese and A. S. Willsky. (1989): Failure detection and identification. IEEE Transactions on Automatic Control, Vol. AC-34, No. 3, pp. 316-323. · Zbl 0682.93061 · doi:10.1109/9.16422 · gateway.webofknowledge.com
[15] Medvedev A. (1994): Parity space method: A continuous time approach. Proceedings of the American Control Conference, Baltimore, Vol. 1, pp. 662-665.
[16] Mironovskii L.A. (1980): Functional diagnosis of dynamic systems. Automation and Remote Control, Vol. 41, No. 8, pp. 1122-1143.
[17] Park J., G. Rizzoni and W.B. Ribbens. (1994): On the representation of sensor faults in fault detection filters. Automatica, Vol. 30, No. 11, pp. 1793-1795. · Zbl 0925.93875 · doi:10.1016/0005-1098(94)90084-1
[18] Patton R. and S. Kangethe. (1989): Robust fault diagnosis using eigenstructure assignment of observers. In: Fault Diagnosis in Dynamic Systems. Theory and Application , Englewood Cliffs: Prentice Hall, pp. 99-154.
[19] Pekpe, K. M., G. Mourot and J. Ragot. (2004): Subspace method for sensors fault detection and isolation - application to grinding circuit monitoring. Proceedings of the 11th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, Nancy, France.
[20] Ritt J.F. (1950): Differential Algebra. New York, American Math. Society. · Zbl 0037.18402 · www.ams.org
[21] Seliger R. and P.M. Frank. (1991): Robust component fault detection and isolation in nonlinear dynamic systems using nonlinear unknown input observers. Proceedings of the IFAC Symposium SAFEPROCESS’91, Baden-Baden, Germany, pp. 313-318.
[22] Shumsky, A. Ye. (1991): Fault isolation in nonlinear systems via functional diagnosis. Automation and Remote Control, Vol. 52, No. 12, pp. 1759-1765. · gateway.webofknowledge.com
[23] Shumsky, A. Ye. (1992): Diagnosis of parametric errors in dynamic objects by the hypothesizes testing method. Avtomatika i telemehanika, Vol. 53, No. 10, pp. 171-177 (in Russian).
[24] Shumsky, A. Ye. (2002): Robust analytical redundancy relations for fault diagnosis in nonlinear systems. Asian Journal of Control, Vol. 4, No 2, pp. 159-170.
[25] Shumsky, A. Ye. and A. N. Zhirabok. (2006): Nonlinear diagnostic filter design: Algebraic and geometric points of view. International Journal of Applied Mathematics and Computer Science, Vol. 16, No. 1, pp. 115-127. · Zbl 1334.93081
[26] Shumsky, A. Ye. (2006): Fault diagnosis of sensors in autonomous underwater vehicle: Adaptive quasi-linear parity relations method. Proceedings of the International Symposium SAFEPROCESS, Beijing, PR China, pp. 415-520.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.