×

Estimating within-household contact networks from egocentric data. (English) Zbl 1228.62146

Summary: Acute respiratory diseases are transmitted over networks of social contacts. Large-scale simulation models are used to predict epidemic dynamics and evaluate the impact of various interventions, but the contact behavior in these models is based on simplistic and strong assumptions which are not informed by survey data. These assumptions are also used for estimating transmission measures such as the basic reproductive number and secondary attack rates. Development of methodology to infer contact networks from survey data could improve these models and estimation methods. We contribute to this area by developing a model of within-household social contacts and using it to analyze the Belgian POLYMOD data set, which contains detailed diaries of social contacts in a 24-hour period. We model dependency in contact behavior through a latent variable indicating which household members are at home. We estimate age-specific probabilities of being at home and age-specific probabilities of contact conditional on two members being at home. Our results differ from the standard random mixing assumption. In addition, we find that the probability that all members contact each other on a given day is fairly low: 0.49 for households with two 0-5 year olds and two 19-35 year olds, and 0.36 for households with two 12-18 year olds and two 36+ year olds. We find higher contact rates in households with 2-3 members, helping explain the higher influenza secondary attack rates found in households of this size.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C60 Medical epidemiology
91D30 Social networks; opinion dynamics
62P99 Applications of statistics

Software:

R; statnet; emdbook; bootstrap
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abdi, H. (2007). Bonferroni and Sidak corrections for multiple comparisons. In Encyclopedia of Measurement and Statistics (N. J. Salkind, ed.). Sage.
[2] Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control . Oxford Univ. Press, London.
[3] Bolker, B. M. (2008). Ecological Models and Data in R . Princeton Univ. Press, Princeton, NJ. · Zbl 1166.62088
[4] Britton, T. and O’Neill, P. D. (2002). Bayesian inference for stochastic epidemics in populations with random social structure. Scand. J. Stat. 29 375-390. · Zbl 1036.62017
[5] Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 6 76-90. · Zbl 0207.17401
[6] Cauchemez, S., Donnelly, C. A., Reed, C., Ghani, A. C., Fraser, C., Kent, C. K., Finelli, L. and Ferguson, N. (2009). Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. New England Journal of Medicine 361 2619-2627.
[7] Davoudi, B., Pourbohloul, B., Miller, J. C., Meza, R. and Meyers, L. A. (2009). Early real-time estimation of infectious disease reproduction number. Available at . 0905.0728
[8] Demiris, N. and O’Neill, P. D. (2005). Bayesian inference for stochastic multitype epidemics in structured populations via random graphs. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 731-745. · Zbl 1101.62106
[9] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57 . Chapman & Hall, New York. · Zbl 0835.62038
[10] Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z. and Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature 429 180-184.
[11] Ferguson, N. M., Cummings, D. A. T., Fraser, C., Cajka, J. C., Cooley, P. C. and Burke, D. S. (2006). Strategies for mitigating an influenza pandemic. Nature 442 448-452.
[12] Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal 13 317-322. · Zbl 0207.17402
[13] Germann, T. C., Kadau, K., Longini, I. M., Jr. and Macken, C. A. (2006). Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. USA 103 5935-5940.
[14] Goeyvaerts, N., Hens, N., Ogunjimi, B., Aerts, M., Shkedy, Z., Van Damme, P. and Beutels, P. (2009). Estimating infectious disease parameters from data on social contacts and serological status. J. R. Stat. Soc. Ser. C. Appl. Stat. 59 255-277. · Zbl 1160.92036
[15] Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Math. Comp. 24 23-26. · Zbl 0196.18002
[16] Halloran, M. E., Hayden, F., Yang, Y., Longini, I. M. and Monto, A. (2007). Antiviral effects on influenza viral transmission and pathogenicity: Observations from household-based trials. Amer. J. Epidemiol. 165 212-221.
[17] Halloran, M. E., Ferguson, N. M., Eubank, S., Longini, I. M., Cummings, D. A. T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T. C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C. A., Burke, D. S. and Cooley, P. (2008). Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl. Acad. Sci. USA 105 4639-4644.
[18] Handcock, M. S. and Gile, K. J. (2007). Modeling social networks with sampled or missing data. Center for Statistics in the Social Sciences, Univ. Washington. Available at . · Zbl 1189.62187
[19] Handcock, M. S. and Gile, K. J. (2010). Modeling social networks with sampled data. Ann. Appl. Stat. 4 5-25. · Zbl 1189.62187
[20] Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. and Morris, M. (2003). Statnet: Software tools for the statistical modeling of network data. Version 2.1. Seattle, WA. Project home page at . Available at http://CRAN.R-project.org/package=statnet .
[21] Hens, N., Goeyvaerts, N., Aerts, M., Shkedy, Z., Damme, P. V. and Beutels, P. (2009). Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect. Dis. 9 5.
[22] Hethcote, H. W. and Yorke, J. A. (1984). Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics 56 . Springer, Berlin. · Zbl 0542.92026
[23] Horby, P., Thai, P. Q., Hens, N., Yen, N. T. T., Mai, L. Q., Thoang, D. D., Linh, N. M., Huong, N. T., er Alex, N., Edmunds, W. J., Duong, T. N., Fox, A. and Nguyen, N. T. (2011). Social contact patterns in Vietnam and implications for the control of infectious diseases. PLoS One 6 .
[24] Keeling, M. J. and Eames, K. T. D. (2005). Networks and epidemic models. Journal of the Royal Society Interface 2 295-307.
[25] Koehly, L. M., Goodreau, S. M. and Morris, M. (2004). Exponential family models for sampled and census network data. Sociological Methodology 34 241-270.
[26] Longini, I. M., Jr., Koopman, J. S., Haber, M. and Cotsonis, G. A. (1988). Statistical inference on risk-specific household and community transmission parameters for infectious diseases. Am. J. Epidemiol. 128 845-859.
[27] Longini, I. M., Nizam, A., Xu, A., Ungchusak, K., Hanshaoworakul, W., Cummings, D. A. T. and Halloran, M. E. (2005). Containing pandemic influenza at the source. Science 309 1083-1087.
[28] Miller, J. C. (2008). Spread of infectious disease through clustered populations. Journal of the Royal Society Interface 6 1121-1134.
[29] Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G. S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M. and Edmunds, W. J. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine 5 0381-0391.
[30] Potter, G. E. and Handcock, M. S. (2010). A description of within-family resource exchange networks in a Malawian village. Demographic Research 23 117-152.
[31] Potter, G. E., Handcock, M. S., Longini, I. M. J. and Halloran, M. E. (2011a). Supplement A to “Estimating within-household contact networks from egocentric data.” . · Zbl 1228.62146
[32] Potter, G. E., Handcock, M. S., Longini, I. M. J. and Halloran, M. E. (2011b). Supplement B to “Estimating within-household contact networks from egocentric data.” . · Zbl 1228.62146
[33] Potter, G. E., Handcock, M. S., Longini, I. M. J. and Halloran, M. E. (2011c). Supplement C to “Estimating within-household contact networks from egocentric data.” . · Zbl 1228.62146
[34] R Development Core Team. (2010). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. Available at .
[35] Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Math. Comp. 24 647-656. · Zbl 0225.65073
[36] Silvey, S. D. (1975). Statistical Inference . Chapman & Hall, London. · Zbl 0323.62002
[37] Wallinga, J., Teunis, P. and Kretzschmar, M. (2006). Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Amer. J. Epidemiol. 164 936-944.
[38] Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics 9 60-62. · Zbl 0018.32003
[39] World Health (2010). Organization, Thousand Oaks, CA. .
[40] Yang, Y., Longini, I. M., Jr. and Halloran, M. E. (2007). A data-augmentation method for infectious disease incidence data from close contact groups. Comput. Statist. Data Anal. 51 6582-6595. · Zbl 1445.62300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.