zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and non-standard finite difference method of the generalized Chua’s circuit. (English) Zbl 1228.65120
Summary: We develop a framework to obtain approximate numerical solutions of the fractional-order Chua’s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles’ locations inside the physical $s$-plane. The Grünwald-Letnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability.

65L12Finite difference methods for ODE (numerical methods)
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
94C05Analytic circuit theory
Full Text: DOI
[1] Chua, L.: Memristor--the missing circuit element, IEEE transactions on circuit theory 18, No. 8, 507-519 (1971)
[2] Strukov, D. B.; Snider, G. S.; Stewart, D. R.: The missing memristor found, Nature 435, 80-83 (2008)
[3] Sabatier, J.; Agrawal, O. P.; Machado, J. A. Tenreiro: Advances in fractional calculus; theoretical developments and applications in physics and engineering, (2007) · Zbl 1116.00014
[4] Oldham, K. B.; Spanier, J.: The fractional calculus, (1974) · Zbl 0292.26011
[5] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[6] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[7] Li, C. P.; Deng, W. H.: Remarks on fractional derivatives, Applied mathematics and computation 187, 777-784 (2007) · Zbl 1125.26009 · doi:10.1016/j.amc.2006.08.163
[8] Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport, Physics reports 371, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[9] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J.: Fractional calculus models and numerical methods, (2009)
[10] Haba, T. C.; Loum, G. L.; Ablart, G.: An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension, Chaos, solitons and fractals 33, 364-373 (2007)
[11] Radwan, A. G.; Elwakil, A. S.; Soliman, A. M.: Fractional-order sinusoidal oscillators: design procedure and practical examples, IEEE transactions on circuits systems I 55, 2051-2063 (2008) · Zbl 1191.94175
[12] Sugi, M.; Hirano, Y.; Miura, Y. F.; Saito, K.: Simulation of fractal immittance by analog circuits: an approach to the optimized circuits, IEICE transactions on fundamentals electronics communications computer science 82, No. 8, 1627-1634 (1999)
[13] G.W. Bohannan, S.K. Hurst, L. Springler, Electrical component with fractional order impedance, Utility Patent Application, 11/30/2006, US20060267595.
[14] A.G. Radwan, M.A. Zidan, K.N. Salama, HP Memristor mathematical model for periodic signals and DC, in: IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2010, pp. 861--864.
[15] Momani, S.: Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method, Applied mathematics and computation 165, No. 2, 459-472 (2005) · Zbl 1070.65105 · doi:10.1016/j.amc.2004.06.025
[16] Momani, S.: An explicit and numerical solutions of the fractional KdV equation, Mathematics and computer simulation 70, No. 2, 110-118 (2005) · Zbl 1119.65394 · doi:10.1016/j.matcom.2005.05.001
[17] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, Journal mathematical analysis and applications 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[18] G. Hussian, S. Momani, Non-standard discretization of fractional differential equations, in: Proceeding of 8th Seminar of Differential Equations and Dynamical Systems in, Isfahan, Iran, 2008.
[19] Erjaee, G. H.: Numerical bifurcation of predator--prey fractional differential equations with a constant rate harvesting, Journal of physics: conference series 96, 012045 (2007)
[20] Mickens, R. E.: Nonstandard finite difference models of differential equations, (1994) · Zbl 0810.65083
[21] Mickens, R. E.; Smith, A.: Finite difference models of ordinary differential equations: influence of denominator models, Journal of the franklin institution fractals. 327, 143-145 (1990) · Zbl 0695.93063 · doi:10.1016/0016-0032(90)90062-N
[22] Mickens, R. E.: Applications of nonstandard finite difference schemes, (2000) · Zbl 0989.65101
[23] Mickens, R. E.: Advances in the applications of nonstandard finite difference schemes, (2005) · Zbl 1079.65005
[24] Itoh, M.; Chua, L. O.: Memristor oscillators, International journal of bifurcation and chaos 18, No. 11, 3183-3206 (2008) · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[25] Radwan, A. G.; Soliman, A. M.; Elwakil, A. S.; Sedeek, A.: On the stability of linear systems with fractional order elements, Chaos, solitons and fractals 40, No. 5, 2317-2328 (2009) · Zbl 1198.93151 · doi:10.1016/j.chaos.2007.10.033
[26] Moaddy, K.; Hashim, I.; Momani, S.: Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems, Computers and mathematics with applications 62, No. 3, 1068-1074 (2011) · Zbl 1228.65119 · doi:10.1016/j.camwa.2011.03.059
[27] M. Perc, User friendly programs for nonlinear time series analysis, Retrieved 7 August, 2010. http://www.matjazperc.com/ejp/time.html.