zbMATH — the first resource for mathematics

Measurement-only topological quantum computation. (English) Zbl 1228.81121
Summary: We remove the need to physically transport computational anyons around each other from the implementation of computational gates in topological quantum computing. By using an anyonic analog of quantum state teleportation, we show how the braiding transformations used to generate computational gates may be produced through a series of topological charge measurements.

81P68 Quantum computation
Full Text: DOI arXiv
[1] DOI: 10.1016/S0003-4916(02)00018-0 · Zbl 1012.81006
[2] J. Preskill, in: Introduction to Quantum Computation (1998)
[3] DOI: 10.1007/s002200200645 · Zbl 1012.81007
[4] DOI: 10.1007/s002200200636 · Zbl 1045.20027
[5] DOI: 10.1103/PhysRevLett.86.5188
[6] DOI: 10.1016/S0375-9601(02)01803-0 · Zbl 1008.81009
[7] DOI: 10.1016/j.aop.2006.01.012 · Zbl 1101.81037
[8] DOI: 10.1103/PhysRevA.76.022304
[9] J. von Neumann, in: Mathematical Foundations of Quantum Mechanics (1955) · Zbl 0064.21503
[10] DOI: 10.1016/0550-3213(91)90407-O
[11] DOI: 10.1103/PhysRevLett.94.166802
[12] DOI: 10.1103/PhysRevA.73.042313
[13] DOI: 10.1103/PhysRevB.73.245307
[14] DOI: 10.1103/PhysRevB.59.8084
[15] DOI: 10.1103/PhysRevLett.98.070401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.